BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCI	BE H: ECE	(,	SEMESTER : V SESSION : MO/19						
TIME:	3 HOURS	SUBJECT: EC5203 MICROWAVE ENGINEERING	FULL MARKS: 60						
 INSTRUCTIONS: 1. The question paper contains 7 questions each of 12 marks and total 84 marks. 2. Candidates may attempt any 5 questions maximum of 60 marks. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 									
Q.1(a)		y bands for the following: and (iii) UWB Radio (iv) DBS	[2]						
Q.1(b) Q.1(c)	Describe the advant	ages of microwave frequencies compared to low frequenc Aicrowave Integrated Circuit with its advantages and limit							

- Q.2(a) What are the advantages of circuit analysis to a microwave problem compared to solving Maxwell's [2] equations for the same problem?
- Q.2(b) Prove that the impedance matrix of a lossless N-port network has purely imaginary elements. [4]
- Q.2(c) Calculate the S parameters of the circuit shown in Figure and show that the circuit acts as a 3 dB [6] attenuator.

8.56 Ω ξ 141.8 Ω $\leq \frac{Port}{2}$ Port 1

- Q.3(a) Is it possible to construct a three-port network which is lossless, reciprocal, and matched at all ports? [2] Justify your answer.
- Q.3(b) Design a Wilkinson power divider with a power division ratio of $\frac{P_3}{P_2} = \frac{1}{3}$, and a source impedance of [4] 50 Ω.
- A directional coupler has the scattering matrix given below. Calculate the directivity, coupling, [6] Q.3(c) isolation, and return loss at the input port when the other ports are terminated in matched loads.

	<u> 0.05∠30</u>	0.96 <u>⁄0</u>	0.1 <u>⁄90</u>	0.05 <u>∕90</u> ך	
1.61	0.96 <u>⁄0</u>	0.05 <u>/30</u>	0.05 <u>/90</u>	0.1 <u>⁄90</u>	
[3] =	0.1 <u>/90</u>	0.05 <u>/90</u>	0.04 <u>/30</u>	0.05/ <u>90</u> 0.1/ <u>90</u> 0.96/ <u>0</u> 0.05/ <u>30</u>	•
	0.05/90	0.1/90	0.96 <u>/0</u>	0.05/30	

- Q.4(a) List the properties of a semiconductor compound that can be used in design of transfer electron [2] devices.
- Q.4(b) A single-pole switch is to be constructed using a PIN diode with the following parameters $C_1=0.5pF$, [4] R_r = 2 Ω , Rf =1.5 Ω , L_i =0.5 nH. If the operating frequency is 1.8 GHz, and Z₀= 50 Ω , Which switch circuit (series or shunt) should be used to obtain the greatest ratio of off-to-on attenuation. [6]
- Q.4(c) Explain the working of a Reflex klystron.
- Q.5(a) A certain lossless circulator has a return loss of 20 dB. Calculate the circulator isolation and [2] transmission.
- In a resonance isolator a ferrite slab is placed inside the waveguide at a location that sees a circularly Q.5(b) [4] polarized field. Explain the reason.
- An infinite lossless ferrite medium with a saturation magnetization of $4\pi M_s = 1200$ G and a dielectric [6] Q.5(c) constant of 10 is biased to a field strength of 500 oersted. At 8 GHz, calculate the differential phase shift per meter between an RHCP and an LHCP plane wave propagating in the direction of bias. Given that $\mu_0 \gamma = 2.8 \text{ MHz}/o_e$

Q.6(a) Q.6(b) Q.6(c)	Draw the electric and magnetic fields for a microstrip line. Describe effective dielectric constant. Explain its effect on the design of microstrip line. Calculate the dielectric attenuation dB/ λ of a 50 Ω copper strip line conductor at 10 GHz. The Substrate provided has a thickness of 0.32cm, ϵ_r = 2.20 and loss tangent is .001.	[2] [4] [6]
Q.7(a) Q.7(b) Q.7(c)	Explain the difference between spectrum analyzer and vector network analyzer? Explain any one method to measure impedance of a device under test. Calculate the maximum power received at a distance of 0.5 km over a free space 1GHz circuit consisting of a transmitting antenna with a 25dB gain and a receiving antenna with 20dB gain. The transmitting antenna input is 150W.	[2] [4] [6]

:::::02/12/2019:::::M