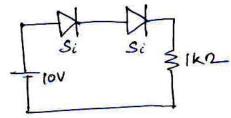
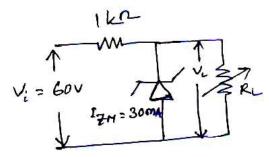
BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

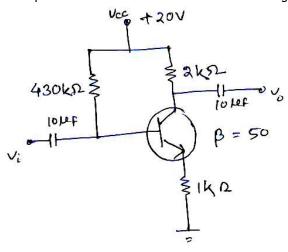
CLASS: BTECH/IMSC SEMESTER: I/BL BRANCH: CSE/IT/ECE/EEE/FOOD TECH. SESSION: MO/2019

SUBJECT: EC101 BASICS OF ELECTRONICS AND COMMUNICATION ENGG.


TIME: 2.00 HOURS FULL MARKS: 25

INSTRUCTIONS:


- 1. The total marks of the questions are 25.
- 2. Candidates may attempt for all 25 marks.
- 3. Before attempting the question paper, be sure that you have got the correct question paper.
- 4. The missing data, if any, may be assumed suitably.


Q1 (a) Find the current flowing through the 1k Ω resistor in the circuit given below

- Q1 (b) Explain the working of PN junction diode. Explain how the depletion region varies with [3] biasing.
- Q2 (a) With suitable diagram explain the operation of center tap transformer type full wave [2] rectifier.
- Q2 (b) Determine the range of R_L that will result in V_L being maintained at 20V. V_i = 60 V, I_{ZM} [3] 30 mA.

- Q3 (a) Derive the relationship between α (alpha) and β (Beta) for a transistor
- Q3 (b) Determine the region of operation of the silicon transistor shown in figure below

[2] [3]

[2]

Q4	(a)	Draw the approximate hybrid parameter equivalent circuit for a CE transistor at low frequencies. Under what condition this equivalent circuit is valid.	[2]
Q4	(b)	With suitable diagram explain the construction and working of n-channel JFET. Draw its transfer characteristics curve.	[3]
-	` '	Derive the expression for determining the overall gain of a negative feedback system. Define barkhausen criteria for sustained oscillation. Draw the circuit diagram of colpitt's oscillator. State the formula for frequency of oscillation.	[2] [3]

::::: 16/10/2019 M ::::::