BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BE SEMESTER: VII BRANCH: CSE SESSION: MO/19

SUBJECT: CS8029 PARALLEL AND DISTRIBUTED SYSTEMS

TIME: 3:00 HOURS FULL MARKS: 60

INSTRUCTIONS:

- 1. The question paper contains 7 questions each of 12 marks and total 84 marks.
- 2. Candidates may attempt any 5 questions maximum of 60 marks.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q.1(a) Q.1(b)	Why do we need parallel computers? Briefly discuss different types of parallelism.	[2] [4]
Q.1(c)	Prove that a K-stage linear pipeline can be at most K-time faster than that of non-pipeline serial processor.	[6]
Q.2(a)	What do you mean by <i>suffix</i> sums problem?	[2]
Q.2(b)	Given a COMMON (CRCW) PRAM algorithm with time complexity $O(t(n))$, what is an upper bound on the time complexity of an algorithm to solve the same problem on the CREW model?	[4]
Q.2(c)	Given an array populated with mixed alphabets, propose a PRAM algorithm that would shift all the capital letters in the beginning of the array.	[6]
Q.3(a)	What is reduction? How is it analogous to logical OR and AND?	[2]
Q.3(b) Q.3(c)	Write a parallel algorithm for reduction of n values on a hypercube SIMD model of computer. Present an illustration of your algorithm for $n = 16$.	[4]
Q.3(C)	Present an ittustration of your argorithm for $H = 10$.	[6]
Q.4(a) Q.4(b) Q.4(c)	What do you mean by a set of linear equations? Illustrate how can a system of linear equations can be solved by Gauss Elimination method. Discuss the parallel version of Gauss Elimination method on MIMD shared memory model computer.	[2] [4] [6]
C (-)	Also, analyze the complexity of designed algorithm	
Q.5(a)	What is a distributed system? Give some real-world examples.	[2]
Q.5(b) Q.5(c)	List some advantages of distributed systems Discuss the challenges and the issues in Distributed system.	[4] [6]
Q.6(a)	Differentiate between asynchronous and synchronous systems in distributed environment.	[2]
Q.6(b)	What do you mean Leader election in distributed system? Why Ring-based approach is preferred in electing Leader?	[4]
Q.6(c)	Discuss a Leader Election method in distributed system. Analyze its complexity.	[6]
Q.7(a) Q.7(b)	Differentiate between <i>broadcast</i> and <i>convergecast</i> strategies used in distributed system. Present the spanning tree-based broadcast algorithm (assuming that root node is specified) in distributed system.	[2] [4]
Q.7(c)	distributed system. Explain why do we need the concept of <i>mutual exclusion</i> . What issue may occur if <i>mutual exclusion</i> is addressed? Discuss the ways to implement mutual exclusion in distributed systems.	[6]

:::::29/11/2019:::::E