BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	M.TECH : CS/IT	SEMESTER : I SESSION : MO	/19	
		SUBJECT: CS506 MACHINE LEARNING		
TIME:	3 HOURS	FULL MARKS:	FULL MARKS: 50	
1. The c 2. Atten 3. The r 4. Befor 5. Table	question paper contai npt all questions. nissing data, if any, n re attempting the que s/Data hand book/Gr	ns 5 questions each of 10 marks and total 50 marks. nay be assumed suitably. estion paper, be sure that you have got the correct question paper. aph paper etc. to be supplied to the candidates in the examination hall.		
Q.1(a)	(i) Describe the differ (ii) Explain any one m	rent types of machine learning. Dethod to test the accuracy of a model.	[3+2]	
Q.1(b)	Some randomly selec The findings are docu	ted chocolate brands were tested for their fat contents (x) and calories (y). Imented in the table below:	[2+1+2]	

Chocolate Brands	Fat contents	Calories (in 12 oz)					
Diary Milk	4.70%	163					
Snickers	6.70%	215					
Munch	8.10%	222					
Perk	4.15%	104					
5 Star	5.10%	162					
Gems	5.00%	158					
Toblerone	5.00%	155					
Amul	4.70%	158					
Safari	6.20%	195					

- What linear regression equation best predicts the calories contained based on its fat (i) contents?
- If a Chocolate brand has a fat content of 5.70% predict the calorie content? (ii)
- How well does the regression equation fit the data? (iii)
- Q.2(a) Illustrate how does overfitting occur in machine learning and how can it be avoided.
- [4] Q.2(b) Use the following dataset to construct a decision tree to predict whether a person is Happy (H) or [6] Sad (S) based on the color of their shirt, whether they wear glasses and the number of SIM cards they have.

Shirt Color	Wear Glasses	Number of SIM cards	Output
G	Y	2	S
G	N	2	S
G	N	2	S
В	N	2	S
В	N	2	Н
R	N	2	Н
R	N	2	Н
R	N	2	H
R	Y	3	Н

Q.3(a) (i) Design a perceptron to implement AND function with bipolar inputs and targets. [2+2] (ii) Explain the working of a Recurrent Network.

Q.3(b) Consider a two-layer feed-forward neural network that has the topology shown in the figure 1. X_1 and X_2 are the two inputs, Z_1 and Z_2 are the two hidden neurons, Y is the (single) output neuron, w_i , i=1..4, are the weights of the connections from the inputs to the hidden neurons and w_j , j=5..6, are the weights of the connections from the hidden neurons to the output neuron. Explain the first training iteration of the Backpropagation algorithm for the current network.

- Q.4(a) Give an advantage of hierarchical clustering over K means clustering.
- Q.4(b) (i) Given points A = (1,2), B = (2,2), C = (2, 1), D = (-1, 4), E = (-2, -1), F = (-1,-1). Starting from [4+4] initial clusters Cluster1 = {A} which contains only the point A and Cluster2 = {D} which contains only the point D, use the K-means clustering algorithm and report the final clusters. Use L1 distance as the distance between points which is given by d((x1, y1), (x2, y2)) = | x1 x2 | + | y1 y2 |.
 - (ii) Given 1-dimensional points A = 1, B = 2, C = 3, D = 8, E = 9, F = 10. Compute single-link bottomup hierarchical clustering using d(x, y) = |x - y| as the distance between points.
- Q.5(a) Illustrate how does an active learning model learn.
- Q.5(b) Explain the AdaBoost Algorithm.

:::::04/12/2019::::E

[6]

[2]

[5]

[5]