BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCI	BE H: CHEMICAL ENGG / CEP&P	SEMESTER : VII SESSION : MO/19	
TIME:	SUBJECT: CL7035 COLLOID AND INTERFACIAL ENGINEERING 3 HOURS	FULL MARKS: 60	
INSTRU 1. The 2. Canc 3. The 4. Befo 5. Table	CTIONS: question paper contains 7 questions each of 12 marks and total 84 marks. lidates may attempt any 5 questions maximum of 60 marks. missing data, if any, may be assumed suitably. re attempting the question paper, be sure that you have got the correct questio es/Data hand book/Graph paper etc. to be supplied to the candidates in the exam-	n paper. nination hall.	
Q.1(a) Q.1(b)	Why the Brownian motion is observed in colloid particles? A spherical particle of 1cm in diameter is broken uniformly into a large number of spherical particles such that the diameter of each of the new particle is 1x10-7 m. What is the total surface area of new particle?		[2] [4]
Q.1(c)	Write short note on electrophoresis and sedimentation potential.		[6]
Q.2(a) Q.2(b)	What is Stokes Einstein equation? HLB of Tween 80 = 15, HLB of Span 80 = 4.3, We need 2 g of Tween 80 and Span 80 years and Span 80 are peeded?	0 blend having a HLB	[2] [4]
Q.2(c)	What are non DLVO forces? Why are they called for? Give two examples.		[6]
Q.3(a) Q.3(b)	What is terminal velocity? What is Creaming? A spherical particle suspended in water is placed in a centrifugal field. The diameter of the particle is 1X10 ⁻⁷ m. What would be the rotational speed so that the particle moves from 6.5cm to 7cm in 60s? Density of particle is 7500kg/m ³ .		[2] [4]
Q.3(c)	Define wash burn equation and explain its significance.		[6]
Q.4(a) Q.4(b)	 Explain the main features of Gemini surfactant. Calculate the value of the London dispersion force constant for methane using the constants of van-de waals equation of state a=0.228m⁶Pamol⁻², b=4.3×10⁻⁵ m³/mol 		[2] [4]
Q.4(c)	Discuss Winsor classification of surfactants		[6]
Q.5(a) Q.5(b)	What is HLB? What is its importance? Estimate the surface tension of ethyl alcohol at 298 K using the parachor data. (ethanol is 800 kg/m3. Parachor for ethyl alcohol is 22.281x10 ⁻⁶	Given: the density of	[2] [4]
Q.5(c)	What is Hamaker constant? Explain its behavior towards spreading of the liquid.		[6]
Q.6(a) Q.6(b)	Differences between flocculation and coagulation. Calculate the equilibrium radius of the microemulsion droplets at 298K if the between oil and water is 50mN/m, volume fraction of the droplets is 0.03, concentration in the microemulsion is 100mol/m3.	e interfacial tension and the surfactant	[2] [4]
Q.6(c)	Give basic feature of L-B film balance. Draw a Π Vs A (surface pressure Vs molec acid in Langmuir-Blodgett film balance.	ular area) of stearic	[6]
Q.7(a) Q.7(b)	Write the expressions for maximum bubble pressure method. Estimate the van der Waals force between two sapphire spheres of 1 mm radius w <i>in vacuo</i> . A_{H} =15.6x10 ⁻²⁰ J	hich are 1 nm apart	[2] [4]
Q.7(c)	Give classification of biosurfactants. What are the advantages and limitations of b	iosurfactants?	[6]

:::::04/12/2019:::::E