BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH:	M.TECH CHEM. ENGG				SEMESTER : I SESSION : MO/19		
TIME: 3:00) HOURS	IBJECT: CL501 ADV	SEMESTER: I SESSION : MO/19 : CL501 ADVANCED TRANSPORT PHENOMENA - 1 FULL MARKS: 50 uestions each of 10 marks and total 50 marks. a assumed suitably. paper, be sure that you have got the correct question paper, per etc. to be supplied to the candidates in the examination hall. 				
INSTRUCT 1. The qu 2. Attemp 3. The mi 4. Before 5. Tables	IONS: estion paper conta ot all questions. ssing data, if any, attempting the qu /Data handbook/Gr	ins 5 questions eac may be assumed su estion paper, be su aph paper etc. to b	th of 10 marks a itably. Ire that you hav be supplied to tl	and total 50 marks re got the correct one candidates in th	question paper. le examination hall.		
Q.1(a) A	field $V(x,y,z)$ is super-	aid to be irrotatior	hal if $[\nabla imes V] = ($). Examine which o	of the following fields are	[5]	
"	(i) (ii) (iii)	Vx = by Vx = by Vx = by	/ < /	Vy = 0 Vy = 0 Vy = bx	Vz = 0 Vz = 0 Vz = 0		
Q.1(b) S	(iv) olve the following:	Vx = -b	У	Vy= bx	Vz = 0	[5]	
w	(i) (iii) <i>v</i> here σ & t are sec	$ \begin{aligned} \boldsymbol{\tau} \cdot \mathbf{v} \\ \boldsymbol{\sigma} \cdot \boldsymbol{\tau} \\ \text{cond order tensors,} \end{aligned} $	(ii) (iv) v & w are first	$ au imes \mathbf{v} \ au: \mathbf{v} \mathbf{w}$ order tensors.			
Q.2(a) P 2	redict the viscosity 5°C and 1 atm. Compone H ₂ From 1	r (in cp) of hydroge nt	n-Freon-12 (dic MW 2.016 120.92	hlorodifluorometha	ne) equimolar mixtures at µ (poise) 88.4 X 10 ⁻⁶ 124 0 X 10 ⁻⁶	[5]	
Q.2(b) P G	Freen-12 120.92 124.0 X 10° Predict the thermal conductivity of molecular oxygen at 300 K and low pressure. Given, Lennard-Jones parameters: σ = 3.433 Å, ϵ/k = 113 K; Molar heat capacity = 7.019 cal/g-mole.						
Q.3(a) F d s (i	For a layer of liquid flowing in laminar flow in the z direction down a vertical plate or surface, determine the velocity profile. Where δ is the thickness of the layer, x is the distance from the free surface of the liquid toward the plate and Vz is the velocity at a distance x from the free surface. (i) What is the maximum velocity Vz , max?						
Q.3(b) U ir n	Using Navier-Stoke's equation, determine the velocity Vz, av and also relate it to Vz, max. Using Navier-Stoke's equation, determine the velocity distribution in steady, laminar flow of an [incompressible and viscous fluid between two parallel plates placed horizontally while the upper plate moves steadily in a direction parallel with the other plate kept fixed.						
Q.4 A D (i	 An incompressible, isothermal Newtonian fluid is held between two vertically placed co-axial cylinders. Determine the velocity distributions for the flow of the fluid when (i) The outer cylinder is rotating at an angular velocity ω2 while the inner cylinder is stationary. (ii) The inner and outer cylinders are rotating at angular velocities of ω1 and ω2, respectively. Use Navier-Stoke's equation. 						
Q.5 A h (i	 A heated sphere of radius R is suspended in a large, motionless body of fluid. It is desired to study the heat conduction in the fluid surrounding the sphere in the absence of convection. (a) Determine the differential equation describing the temperature T in the surrounding fluid as a function of r, the distance from the center of the sphere. k = Thermal conductivity of fluid. (b) Integrate the differential equation and use these boundary conditions to determine the integration constants: at r = R, T = T_R; and r = ∞, T = T_∞. (c) From the temperature profile, determine an expression for the heat flux at the surface. Equate this result to the heat flux given by "Newton's law of cooling" and show that a dimensionless heat transfer coefficient is given by Nu = hD/k = 2 in which D is the sphere diameter. 						

(d) In what respect are the Biot number and the Nusselt number different?

§B.4 THE EQUATION OF CONTINUITY^a

Cartes

 $\left[\frac{\partial \rho}{\partial t} + (\nabla \cdot \rho \mathbf{v}) = 0\right]$

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} \left(\rho v_x \right) + \frac{\partial}{\partial y} \left(\rho v_y \right) + \frac{\partial}{\partial z} \left(\rho v_z \right) = 0 \tag{B.4-1}$$

Cylindrical coordinates (r, θ, z) :

$$\frac{\partial \rho}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} (\rho r v_r) + \frac{1}{r} \frac{\partial}{\partial \theta} (\rho v_\theta) + \frac{\partial}{\partial z} (\rho v_z) = 0$$
(B.4-2)

Spherical coordinates (r, θ, ϕ) :

$$\frac{\partial \rho}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} \left(\rho r^2 v_r\right) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} \left(\rho v_\theta \sin \theta\right) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \left(\rho v_\phi\right) = 0 \tag{B.4-3}$$

^a When the fluid is assumed to have constant mass density ρ , the equation simplifies to $(\nabla \cdot \mathbf{v}) = 0$.

§B.5 THE EQUATION OF MOTION IN TERMS OF τ

 $[\rho D\mathbf{v}/Dt = -\nabla p - [\nabla \cdot \boldsymbol{\tau}] + \rho \mathbf{g}]$

<i>Cylindrical coordinates</i> (r, θ, z) ^{<i>b</i>}	
$\rho\left(\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} + v_z \frac{\partial v_r}{\partial z} - \frac{v_\theta^2}{r}\right) = -\frac{\partial p}{\partial r} - \left[\frac{1}{r} \frac{\partial}{\partial r} (r\tau_r) + \frac{1}{r} \frac{\partial}{\partial \theta} \tau_{\theta r} + \frac{\partial}{\partial z} \tau_{zr} - \frac{\tau_{\theta \theta}}{r}\right] + \rho g_r$	(B.5-4)
$\rho \left(\frac{\partial v_{\theta}}{\partial t} + v_{r} \frac{\partial v_{\theta}}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial v_{\theta}}{\partial \theta} + v_{z} \frac{\partial v_{\theta}}{\partial z} + \frac{v_{r} v_{\theta}}{r} \right) = -\frac{1}{r} \frac{\partial p}{\partial \theta} - \left[\frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \tau_{r\theta} \right) + \frac{1}{r} \frac{\partial}{\partial \theta} \tau_{\theta\theta} + \frac{\partial}{\partial z} \tau_{z\theta} + \frac{\tau_{\theta r} - \tau_{r\theta}}{r} \right] + \rho g_{\theta}$	(B.5-5)
$\left(2\pi\right)$ 2π π 2π 2π 2π 2π 2π	

$$\rho\left(\frac{\partial v_z}{\partial t} + v_r \frac{\partial v_z}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_z}{\partial \theta} + v_z \frac{\partial v_z}{\partial z}\right) = -\frac{\partial p}{\partial z} - \left[\frac{1}{r} \frac{\partial}{\partial r} (r\tau_r) + \frac{1}{r} \frac{\partial}{\partial \theta} \tau_{\theta z} + \frac{\partial}{\partial z} \tau_{zz}\right] + \rho g_z$$
(B.5-6)

^b These equations have been written without making the assumption that τ is symmetric. This means, for example, that when the usual assumption is made that the stress tensor is symmetric, $\tau_{r\theta} - \tau_{\theta r} = 0$.

§B.6 EQUATION OF MOTION FOR A NEWTONIAN FLUID WITH CONSTANT ρ AND μ

$$[\rho D\mathbf{v}/Dt = -\nabla p + \mu \nabla^2 \mathbf{v} + \rho \mathbf{g}]$$

Cylindrical coordinates (r, θ, z) :

 $\rho \left(\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} + v_z \frac{\partial v_r}{\partial z} - \frac{v_\theta^2}{r} \right) = -\frac{\partial p}{\partial r} + \mu \left[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} (rv_r) \right) + \frac{1}{r^2} \frac{\partial^2 v_r}{\partial \theta^2} + \frac{\partial^2 v_r}{\partial z^2} - \frac{2}{r^2} \frac{\partial v_\theta}{\partial \theta} \right] + \rho g_r \quad (B.6-4)$ $\rho \left(\frac{\partial v_\theta}{\partial t} + v_r \frac{\partial v_\theta}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_\theta}{\partial \theta} + v_z \frac{\partial v_\theta}{\partial z} + \frac{v_r v_\theta}{r} \right) = -\frac{1}{r} \frac{\partial p}{\partial \theta} + \mu \left[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} (rv_\theta) \right) + \frac{1}{r^2} \frac{\partial^2 v_\theta}{\partial \theta^2} + \frac{\partial^2 v_\theta}{\partial z^2} + \frac{2}{r^2} \frac{\partial v_r}{\partial \theta} \right] + \rho g_\theta \quad (B.6-5)$ $\rho \left(\frac{\partial v_z}{\partial t} + v_r \frac{\partial v_z}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_z}{\partial \theta} + v_z \frac{\partial v_z}{\partial z} \right) = -\frac{\partial p}{\partial z} + \mu \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_z}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 v_z}{\partial \theta^2} + \frac{\partial^2 v_\theta}{\partial z^2} + \frac{2}{r^2} \frac{\partial v_r}{\partial \theta} \right] + \rho g_z \quad (B.6-6)$

PTO

кТ/е or кТ/е _{лв}	$\begin{split} \Omega_{\mu} &= \Omega_k \\ (\text{for viscosity} \\ \text{and thermal} \\ \text{conductivity}) \end{split}$	$\Omega_{\mathcal{DAB}}$ (for diffusivity)	кT/e or кT/e _{лs}	$\begin{split} \Omega_{\mu} &= \Omega_k \\ (\text{for viscosity} \\ \text{and thermal} \\ \text{conductivity}) \end{split}$	$\Omega_{\mathfrak{D},\mathcal{A} \theta}$ (for diffusivity)
0.30	2.840	2.649	2.7	1.0691	0.9782
0.35	2.676	2.468	2.8	1.0583	0.9682
0.40	2.531	2.314	2.9	1.0482	0.9588
0.45	2.401	2.182	3.0	1.0388	0.9500
0.50	2.284	2.066	3.1	1.0300	0.9418
0.55	2.178	1.965	3.2	1.0217	0.9340
0.60	2.084	1.877	3.3	1.0139	0.9267
0.65	1.999	1.799	3.4	1.0066	0.9197
0.70	1.922	1.729	3.5	0.9996	0.9131
0.75	1.853	1.667	3.6	0.9931	0.9068
0.80	1.790	1.612	3.7	0.9868	0.9008
0.85	1.734	1.562	3.8	0.9809	0.8952
0.90	1.682	1.517	3.9	0.9753	0.8897
0.95	1.636	1.477	4.0	0.9699	0.8845
1.00	1.593	1.440	4.1	0.9647	0.8796
1.05	1.554	1.406	4.2	0.9598	0.8748
1.10	1.518	1.375	4.3	0.9551	0.8703
1.15	1.485	1.347	4.4	0.9506	0.8659
1.20	1.455	1.320	4.5	0.9462	0.8617
1.25	1.427	1.296	4.6	0.9420	0.8576
1.30	1.401	1.274	4.7	0.9380	0,8537
1.35	1.377	1.253	4.8	0.9341	0.8499
1.40	1.355	1.234	4.9	0.9304	0.8463
1.45	1.334	1.216	5.0	0.9268	0.8428
1.50	1.315	1.199	6.0	0.8962	0.8129
1.55	1.297	1.183	7.0	0.8727	0.7898
1.60	1.280	1.168	8.0	0.8538	0.7711
1.65	1.264	1.154	9.0	0.8380	0.7555
1.70	1.249	1.141	10.0	0.8244	0.7422
1.75	1.235	1.128	12.0	0.8018	0.7202
1.80	1.222	1.117	14.0	0.7836	0.7025
1.85	1.209	1.105	16.0	0.7683	0.6878
1.90	1.198	1.095	18.0	0.7552	0.6751
1.95	1.186	1.085	20.0	0.7436	0.6640
2.00	1,176	1.075	25.0	0.7198	0.6414
2.10	1.156	1.058	30.0	0.7010	0.6235
2.20	1.138	1.042	35.0	0.6854	0.6088
2.30	1.122	1.027	40.0	0.6723	0.5964
2.40	1.107	1.013	50.0	0.6510	0.5763
2.50	1.0933	1.0006	75.0	0.6140	0.5415
2.60	1.0807	0.9890	100.0	0.5887	0.5180

 Table E.2
 Collision Integrals for Use with the Lennard-Jones (6–12) Potential for the Prediction of Transport Properties of Gases at Low Densities^{e,k,c}

:::::27/11/2019:::::E