
BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

				D SEWESTER E	XAMINA HUr	N)			
CLASS: BRANCH	BE : CHEM/P&	Ρ						MESTER : V SSION : MO/19	
		SLIP		05 CHEMICAL			-		
TIME:	3 HOURS	300			REACTION			LL MARKS: 60	
2. Cand 3. The r 4. Befor	TIONS: juestion paper idates may att nissing data, i e attempting s/Data hand b	empt any s f any, may the question	5 questions be assumed on paper, be	maximum of I suitably. e sure that yo	60 marks. ou have got t	he correct c	juestion pap		
	Define order a What is active The first-orde	ation energy or reversible	/? How does e liquid phase	a catalyst aff e reaction (ϵ_A		ation energy	of a chemic	al reaction?	[2] [4] [6]
	$A \stackrel{k_1}{\underset{k_2}{\leftrightarrow}} R, C$	$L_{A0} = 0.5 \text{ m}$	nol/liter, ($C_{R0} = 0$					
	takes place while equilibr	in a	batch rea	ctor. After				A is 33.3%	
Q.2(a)	Write down th	no general i	nole balance	equation for	batch and n	lug flow read	tors		[2]
Q.2(a) Q.2(b)								expression for	[4]
Q. = (0)	conversion of								r.1
Q.2(c)	The following						5		[6]
	X _A	0	0.1	0.2	0.4	0.6	0.7	0.8	
		0.45	0.37	0.3003	0.195	0.113	0.0787	0.05	
	Find the volur flow rate are					al molar con	centration a	nd volumetric	
Q.3(a)	What is Damk								[2]
Q.3(b)	Which combin order and firs						highest con	version for 2 nd	[4]
]→ →					
	Why is real of	, waa at av b	at far autoa	atal the reast	:				

Why is recycle reactor best for autocatalytic reaction?

Q.3(c) A liquid phase reaction $A \rightarrow R + S$ takes place in a system consisting of a CSTR and a PFR reactor with [6] recycle. One introduces1 kmol/m³ of reagent A into the first reactor. Both CSTR and PFR operate isothermally at 300°C and atmospheric pressure. The volume of the first reactor is 0.086 m³ and the inlet flow is $0.0016 \text{ m}^3/\text{s}$. The conversion at the outlet of the PFR is 90%. It is a first-order reaction and the rate is $(-r_A) = 8 C_A \text{ kmol}/(\text{m}^3 \text{ h})$. Calculate the PFR volume considering

a recycle ratio of R = 1.

- Q.4(a) What is meant by active site? What are the interactive forces acting in chemisorption? [2] [4]
- Discuses and derive the expression for Langmuir adsorption isotherm Q.4(b)

$$A(g) + B(g) \rightleftharpoons C(g)$$

where surface reaction is the rate controlling step.

[6]

- Q.5(a) Discuss various factors that causes non-ideality of reactors.
- [2] [4] Q.5(b) List the differences between E(t) and F(t) functions. Derive E(t) function for pulse input in a CSTR. Also find the variance.
- Q.5(c) A sample of tracer was injected as pulse to a reactor and the effluent concentration measured as a [6] function of time. The results are

[2]

[4] 61

T (min)													
C (mol/m3)	0	0 1	5	8	10	8	6	4	3	2.2	1.5	0.6	0

Calculate the mean residence time.

- Q.6(a) Write the names of the parameters in tanks in series model and dispersion model.
- Q.6(b) Discuss the different boundary conditions in dispersion model.
- Q.6(c) For tanks in series model, Prove that

$$\sigma_{\theta}^2 = \frac{1}{N}$$

The notations have their usual meaning.

- Q.7(a) Define homopolymer and copolymer.
- [2] Q.7(b) Show the structure of linear, branched and crosslinked polymers. Cite the differences between [4] addition polymerization and condensation polymerization.
- Q.7(c) Compare between emulsion polymerization and suspension polymerization. Mention the disadvantages [6] of emulsion polymerization with respect to other polymerization techniques.

:::::29/11/2019:::::M