BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

CL BR	ASS: ANCH	BE I: CHEMICAL ENGG.(Plastics & Polymer)	SEMESTER: III SESSION : MO/2019
		SUBJECT : CL213 MACROMOLECULAR SCIENCE	
TIA	٨E:	2.00 HOURS	FULL MARKS: 25
 INSTRUCTIONS: 1. The total marks of the questions are 25. 2. Candidates may attempt for all 25 marks. 3. Before attempting the question paper, be sure that you have got the correct question paper. 4. The missing data, if any, may be assumed suitably. 			
Q1	(a)	What is gel point? How can we predict gel point in condensation polymeriz	ation? [2]
Q1	(b)	Derive: $2c_0^2$ kt= $\frac{1}{(1-p)^2}$ - constant	[3]
Q2 Q2	(a) (b)	For a bifunctional system if molecular weight of repeat unit is M ₀ how much molecular weight of the polymer in terms of extent of reaction p? Derive $\left(\frac{[M1]}{[M2]}\right)_{copolymer} = \left(\frac{[M1]}{[M2]}\right)_{Feed} \times \frac{r_1[M1] + [M2]}{[M2]r^2 + [M1]}$	is the average [2] [3]
Q3 Q3	(a) (b)	Elaborate the effect of cage upon rate of radical polymerization. Derive $R_p = \frac{K_p}{k_t^{1/2}} \times \sqrt{\frac{1}{2}R_i} \times [M]$	[2] [3]
Q4 Q4	(a) (b)	What are the disadvantages of self -catalyzed condensation polymerization Derive $F_1 = \frac{(r_1 f_1^2 + f_1 f_2)}{(r_1 f_1^2 + 2f_1 f_2 + r_2 f_2^2)}$	n? [2] [3]
Q5 Q5	(a) (b)	Define initiator efficiency. Explain its importance. How many polymers may be formed of the following monomers at the most the repeat unit structure and name of the possible homopolymers formed or monomers:	[2] st? Write down [3] f the following
		OH	

:::: 26/09/2019E :::::