BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS:	BTECH
BRANCH:	CHEMICAL/CHEMICAL(P&P)

SUBJECT: CL205 MECHANICAL OPERATIONS

TIME: **3 HOURS** FULL MARKS: 50

SEMESTER : III

SESSION: MO/19

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.
- _____
- Q.1(a) Discuss the advantages and disadvantages of belt conveyor.
- The size distribution of a dust as measured by a microscope is as follows. Convert these data to Q.1(b) obtain the distribution on a mass basis, and calculate the specific surface, assuming spherical particles of density 2650 kg/m3.

Size	0-2	2-4	4-8	8-12	12-16	16-20	20 24
range							
(µm)							
Number	2000	600	140	40	15	5	2
of							
particles							

- Q.2(a) Derive the expression of critical rotational speed of ball mill. Find the critical rotational speed in [5] rev/s for a ball mill of 1.2m diameter charged with 70 mm diameter balls?
- Q.2(b) Explain the different mechanism of crushing. Give example.
- Q.3(a) Demonstrate the working of double cone classifier.
- Q.3(b) Derive the design equations of classifier and thickener. Write down the necessary assumptions.
- Q.4(a) Define the cycle time (t_{cycle}) of filtration. Determine the expression for optimum cycle time of batch [5] filtration.
- Q.4(b) A rotary drum filter with 30% submergence is to be used to filter concentrated aqueous slurry of CaCO₃ [5] containing 236 kg of solids per m³ of water. The pressure drop is to be $6.9 \times 10^4 \text{ N/m^2}$. If the filter cake contains 50% (wet basis) moisture, calculate the filter area required to filter 0.04 m³/min of slurry when the filter cycle time is 5 minute. Assume that the specific cake resistance is 2×10^{10} m/kg and filter medium resistance is negligible. The temperature is 20° C. Viscosity = 1.005 x 10^{-3} Pas, density = 998kg/m³. Density of CaCO₃=2700kg/m3
- Q.5(a) Demonstrate the working and applications of ESP.
- Q.5(b) In a mixture of quartz of density 2650 kg/m3 and galena of density 7500 kg/m3, the sizes of the [5] particles range from 0.0052 to 0.025 mm. On separation in a hydraulic classifier under free settling conditions, three fractions are obtained, one consisting of quartz only, one a mixture of quartz and galena, and one of galena only. What are the ranges of sizes of particles of the two substances in the original mixture?

:::::04/12/2019:::::M

[5] [5]

- [5]
- [5]

[5]

[5]