BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCI	MSC I: CHEMISTRY	SEMESTER : I SESSION : MO/19
SUBJECT: CH401 BASIC INORGANIC CHEMISTRY TIME: 3:00 HOURS FULL MARKS: 50		FULL MARKS: 50
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 		
Q.1(a) Q.1(b)	Define equivalent and non-equivalent hybrid orbital and discuss δ bonding with Discuss Walsh's rule and draw the M.O diagrame for H_2O molecule accordingly.	example. [5] [5]
Q.2(a) Q.2(b)	For an octahedral crystal field obtain the potential at any point. Schemetically represent and explain tetragonal distortion in octahedral geometry	[5] ry. [5]
Q.3(a)	Show the steps in SN ¹ CB mechanism in octahedral Co(III) complexes and discus difference between the rate data of acid hydrolysis and base hydrolysis of [Co(NH explained by SN1CB mechanism. Explain.	s that the large [5] I ₃) ₅ Cl] ²⁺ can only
Q.3(b)	What is trans effect? Discuss trans effect by polarization theory.	[5]
Q.4(a) Q.4(b)	Draw the energy level diagram for the microstates of carbon. Discuss the relaxation processes for the Laporte Selection Rule.	[5] [5]
Q.5(a) Q.5(b)	With suitable example, discuss Holohedrized symmetry in an octahedral environ V^{*3} shows lesser number of ligand field bands in the experimental spectrum. He can be predicted theoretically.	

:::::29/11/2019:::::E