BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	IMSC I: Chemistry	SEMESTER : I SESSION : MO/19	÷
TIME:3:0	SUBJECT: CH104 PHYSICAL CHEMISTRY-I: STATES OF MATTER & IONIC EQUI 00 HOURS	LIBRIUM FULL MARKS: 50)
1. The 2. Atter 3. The 4. Befo	CTIONS: question paper contains 5 questions each of 10 marks and total 50 marks. npt all questions. missing data, if any, may be assumed suitably. re attempting the question paper, be sure that you have got the correct questio es/Data hand book/Graph paper etc. to be supplied to the candidates in the exam		
Q.1(a) Q.1(b)	From Maxwell velocity distribution derive the expression for most probable velocit For O_2 molecules, the root mean square velocity at T_1 , the average velocity at T_2 ar velocity at T_3 are all equal to 1.5 X 10 ³ m/s. Calculate T_1 , T_2 and T_3 .		[5] [5]
Q.2(a) Q.2(b)	Derive the expression for Boyle temperature (T_B) and show that $T_B > T_C$ Using van der Waals equation, find the temperature at which 3 mol of SO ₂ will occ 10 dm ³ at a pressure of 1.52 MPa. [Given, a = 678 dm ⁶ kPa mol ⁻² and b = 5.6 X 10 ⁻²		[5] [5]
Q.3(a)	Why excess pressure inside a soap bubble is twice the excess pressure of a liquid or	lrop of the same	[5]
Q.3(b)	radius? A spherical drop of a liquid weighing 0.04 gm is dispersed into 1000 homogeneous radius 0.02 cm each. Find the resultant increase in surface energy. [Given, densit = 27 dyne/cm]		[5]
Q.4(a)	Derive the Bragg's diffraction law, $n\lambda = 2d \sin\theta$ Calculate the longest wavelength of x-ray that may be used to determine a lattic	e spacing of 1 Å	[5]
Q.4(b)	by the Bragg's diffraction method. In the cubic crystal of CsCl (d = 3.97 gm/cc) the eight corners are occupied by Cl ⁻ i the centre and vice-versa. Calculate the distance between the neighbouring Cs ⁺ a wt. of Cs = 132.91 and Cl = 35.45]		[5]

- Q.5(a) Determine the expression of pH at the end point of titration when CH₃COOH is titrated with NaOH. [5]
- Q.5(b) You are supplied with 0.1 (N) NH₄OH and 0.1 (N) HCl solutions. Show how you will you use these to [5] prepare 100 mL of a buffer solution of pH = 9.0 [K_b for NH₄OH = 2 X 10⁻⁵]

:::::02/12/2019:::::E