
BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCI	BE H: CIVIL	(SEMESTER : VII SESSION : MO/19	
TIME:	3.00Hrs.	SUBJECT: CE8009 SEWERAGE A	ND SEWAGE TREATMENT	FULL MARKS: 60	
 INSTRUCTIONS: 1. The question paper contains 7 questions each of 12 marks and total 84 marks. 2. Candidates may attempt any 5 questions maximum of 60 marks. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 					
Q.1(a) Q.1(b) Q.1(c)	Describe the appurtenances used in sewer systems.				[2] [4] [6]
Q.2(a) Q.2(b) Q.2(c)	What are the dim materials selection	an imperfect trench conduit. fferent types of sewer materials? I on for sewer construction. irements for trench and tunnel for		o be considered for	[2] [4] [6]
Q.3(a) Q.3(b)	The dilution fact 9.5 mg/L and D	portant physical characteristics of s or <i>P</i> for an unseeded mixture of wa O after 5 days - 3.8 mg/L. Reactio ollowing: (a) 5day BOD of the was ng after 5 days?	uste and water is 0.020. Initial on rate constant <i>k</i> was 0.23/c	lay. Based on these	[2] [4]
Q.3(c)		iple tube fermentation technique f	or testing of coliforms in sewa	ge.	[6]
Q.4(a) Q.4(b) Q.4(c)	What are the different types of reactors? Explain the needs for tracer analysis, types of tracers and analysis of tracer response curve. Discuss the modeling of nonideal flow in reactors.				[2] [4] [6]
Q.5(a) Q.5(b)	Select an approp	ory of grit removal in STP. riate aerator and aerator configura for selection of aerator.			[2] [4]
Selection table for floating mechanical aerators"					
		Complete	0.75 1.5 2.5 3.	5 5.5 7.5 10 15 20 25	

Q.5(c) Evaluate the headlosses through a mechanically cleaned bar rack for a STP with a clean bar rack and [6] with partial blockage of the screen. Average flow rate at design capacity for a STP is 40,000 m³/d. Given data: channel width - 1.6 m, depth of flow in channel - 1.4 m, approach velocity - 0.5 m/s, k - 1.67 for clean screen, k - 1.43 for partially clogged screen, Bar width - 15 mm, bar spacing - 20 mm, angle from vertical - 30°, differential headloss for activation of cleaning operation of rakes is 150 mm, maximum flow area blockage to initiate continuous operation of rakes is 40%.

- Q.6(a) Discuss the alternatives/modifications that may be used for primary treatment.
- Q.6(b) With the help of a neat sketch present a circular primary settling tank.
- Q.6(c) STP is being designed to treat 70,000 m³/d wastewater. The STP will have 10 identical circular primary [6] settling tank, each pair of PST will be served by one splitter box. Using a sharp-crested weir, design a splitter box for two identical circular clarifiers. Assume peak factor value of 2.3 for the STP.
- Q.7(a) Describe the N removal process during wastewater treatment.

[2] [4]

[2] [4]

- Q.7(b) Explain the suspended and attached growth processes used for CBOD removal from wastewater.
- Q.7(c) Design a CMR type ASP as secondary treatment unit for wastewater for a town with flow rate 12,960 [6] m³/d and BOD₅ 90 mg/L. Assume the following: Ks = 100 mg/L BOD₅, μm 2.5 d⁻¹, k_d 0.06 d⁻¹, Y 0.5 mg VSS/mg BOD₅ removed. Also, assume that the secondary clarifier can produce effluent with 30 mg/L TSS and that MLVSS 2 g/L.

:::::13/12/2019E:::::