BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: MTECH SEMESTER: I
BRANCH: CIVIL SESSION: MO/19

SUBJECT: CE527 ECOLOGY AND ENVIRONMENT

TIME: 3:00 HOURS FULL MARKS: 60

INSTRUCTIONS:

- 1. The question paper contains 7 questions each of 12 marks and total 84 marks.
- 2. Candidates may attempt any 5 questions maximum of 60 marks.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q.1(a) Q.1(b)	Construct the earth's atmosphere with the typical variations of temperature and pressure. Explain the principle and functioning of an alternate black and white sensing solarimeter.	[5] [5]
Q.2(a) Q.2(b)	Elaborate the factors determining the ecological efficiency of a trophic level with necessary formulas. An ecosystem consist of a species, having count of 15000 and intrinsic rate of increase is 0.2, Carrying capacity is 80000, Determine the population after 05 years.	[5] [5]
Q.3(a) Q.3(b)	Discuss the recent threats to biodiversity with examples in each case. Determine the Shanon-Weiner diversity and evenness of an ecosystem containing 5 species (35, 28, 12, 22, 03).	[5] [5]
Q.4(a) Q.4(b)	Identify the problems associated with overpopulation on environmental degradation and public health. Discuss on CDM.	[5] [5]
Q.5(a)	Suppose you have to identify a bacteria capable of degrading plastics. How would you experiment in laboratory and optimize the best degrading performance?	[5]
Q.5(b)	Determine the moisture and nutrient requirement ($(NH_4)_2SO_4$) for a 100 kg toluene (C_7H_8) contaminated soil of 1000 sq ft, with a porosity of 20% and initial saturation of 5% for biodegradation.	[5]

:::::25/11/2019:::::E