BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

CLASS: BE BRANCH: CIVIL SEMESTER: V SESSION : MO/2019

SUBJECT : CE5003 FLUID MECHANICS II

TIA	AE:	1.5 HOURS FULL	MARKS: 25	5
 INSTRUCTIONS: The total marks of the questions are 30. Candidates may attempt for all 30 marks. In those cases where the marks obtained exceed 25 marks, the excess will be ignored. Before attempting the question paper, be sure that you have got the correct question paper. The missing data, if any, may be assumed suitably. 				
Q1	(a) (b)	Classify the following open channel flow situations: (i) Flow from a sluice gate, (ii) Flood in a river, (iii) Breaking of a dam, (iv) Flo spillway While measuring the discharge in a small stream it was found that the dept increases at the ratio of 0.1 m/h. If the discharge at that section was 25 m ³ /s surface width of the stream was 20 m, estimate the discharge at a section upstream.	h of flow s and the	[2] [3]
Q2	(a) (b)	Explain the velocity distribution in open channels. Derive the relations for kinetic energy and momentum correction factors.		[2] [3]
Q3	(a) (b)	Derive expression for average bed shear stress in an open channel. Derive the formula for Chezy's equation and show the relationship betweer coefficient and Darcy-Weisbach friction factor.	ו Chezy's	[2] [3]
Q4	(a) (b)	bed slope is 0.0003. The channel is lined with smooth concrete of $n = 0.012$. the mean velocity and discharge for a depth of flow of 3 m.	Compute apezoidal	[2] [3]
Q5		What is specific energy? Show the specific energy curves for different discharge Obtain expression of critical depth and specific energy at critical depth for:- (i) a rectangular channel, and (ii) a triangular channel.	25.	[2] [3]
Q6		Water is flowing at critical depth at a section in a Δ shaped channel, with side 0.5 H: 1 V. If the critical depth is 1.6 m, estimate the discharge in the channel specific energy at the critical depth section. Calculate the bottom width of a channel required to carry a discharge of 15 m critical flow at a depth of 1.2 m, if the channel section is:- (i) rectangular, and (ii) trapezoidal with side slope 1.5 horizontal: 1 vertical.	l and the	[2] [3]

:::::: 20/09/2019:::::E