BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI
 (MID SEMESTER EXAMINATION)

CLASS: BE BRANCH: CIVIL

SEMESTER: V
SESSION : MO/2019

SUBJECT : CE5001 STRUCTURAL ANALYSIS - II

TIME: 1.5 HOURS
FULL MARKS: 25

INSTRUCTIONS:

1. The total marks of the questions are 30.
2. Candidates may attempt for all 30 marks.
3. In those cases where the marks obtained exceed 25 marks, the excess will be ignored.
4. Before attempting the question paper, be sure that you have got the correct question paper.
5. The missing data, if any, may be assumed suitably.

Q1 $\quad A$ beam $A B C D 9 m$ long is simply supported at A, B and C such that the span $A B$ is $3 m$, span $B C$ is 4.5 m and the overhung $C D$ is 1.5 m . It carries a uniformly distributed load of $1.5 \mathrm{t} / \mathrm{m}$ in span $A B$ and a point load of $1 t$ at the free end D. the moment of inertia of the beam in span $A B$ is I and that in the span $B C$ is $2 I$. Draw the B.M and SF diagrams for the beam. Use three moment theorem.

Q2 Determine the influence line for RA for the continues beam shown in fig(1) complete the ordinates at every 2 m interval.

Q3 A beam of length L is supported at the ends and its middle point as shown in fig(2) the beam carries a uniformly distributed load of per unit rum over the whole span determine the reaction at middle support by the principle of least work.

Q4 A beam $A B C$ of length 16 m consists of span $A B$ and $B C$ each 8 m long and is simply supported at A, B and C the beam carries a uniformly distributed load of $40 \mathrm{kn} / \mathrm{m}$ the whole length find the reactions at the support and support moments. use three moment theorem.

Q5 A beam AB 4m long is fixed at A and simply supported at B. it carries a point load of 16 KN at a distance of $I m$ from B. determine the reaction at B by the principle of least work.

Q6 (a) Write principle of least work.
(b) What do you know by redundant frame?

