BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: MCA
BRANCH: MCA SEMESTER : II
TIME: 3 HOURS \quad SUBJECT: CA503 COMPUTER ALGORITHM DESIGN
INSTRUCTIONS:

1. The question paper contains 5 questions each of 10 marks and total 50 marks.
2. Attempt all questions.
3. The missing data, if any, may be assumed suitably.
4. Before attempting the question paper, be sure that you have got the correct question paper.
5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.
Q.1(a) Prove that every polynomial of degree $k, P(n)=a_{k} n^{k}+a_{k-1} n^{k-1}+\ldots a_{0}$, with $a_{k}>0$ belongs to $\theta\left(n^{k}\right)$.
Q.1(b) There exist algorithms for matrix multiplication with a better asymptotic efficiency than the cubic complexity of the definition-based algorithm. Because of their much larger multiplicative constants, however, the value of these more sophisticated algorithms is mostly theoretical. Discuss the above statement in view of theoretical versus empirical analysis of algorithms.
Q.2(a) Solve the following recurrence exactly for n a power of 2 .
$T(n)=2 T(n / 2)+\operatorname{lgn}$, for all $n>1$
$T(1)=1$.
Express your answer as simply as possible using the Θ notation.
Q.2(b) Discuss Dijkstra's algorithm for single source shortest paths problem. Does Dijkstra's algorithm work for graphs with negative weights? Justify your answer.
Q.3(a) Apply quicksort to sort the list M, E, R, G. E, S, O, R, T in alphabetical order. Find the element whose position is unchanged in the sorted list.
Q.3(b) If only the number of additions and the number of multiplications are taken into account, which one of the following algorithm would be perfect and why? - Strassen's algorithm - brute-force algorithm.
Q.4(a) Using dynamic programming approach develop an algorithm to solve the $0 / 1$ Knapsack problem. [5] Compute time complexity of your approach.
Q.4(b) Design a dynamic programming algorithm for the 'change-making-problem'. Given an amount n and unlimited quantities of coins of each of the denominations $d_{1}, d_{2}, \ldots, d_{m}$, find the smallest number of coins that add up to n or indicate that the problem does not have a solution.
Q.5(a) Explain how one can identify connected components of a graph by using depth-first-search algorithm.
Q.5(b) What do you mean by a randomized algorithm? Discuss its various classes with suitable example(s).
