BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

			(EN	ID SEMESTER EX	AMINATION)			
CLA BRA	SS: NCH:	MCA MCA					SEMESTER : III SESSION : MO/19	
	TRUCT	SUBJECT: CA503 COMPUTER ALGORITHM DESIGN 3 HOURS CTIONS: question paper contains 5 questions each of 10 marks and total 50 marks.				FULL MARKS: 50		
 Attempt all questions. The missing data, if any, may be assumed suitably. Before attempting the question paper, be sure that you have got the correct question paper. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 								
Q.1 Q.1	(b) T c ł							[5] [5]
Q.2	T	Folve the followir (n) = 2T(n/2) + 1 (1) = 1.	ng recurrence exac Ign, for all n > 1	tly for <i>n</i> a powe	r of 2.			[5]
Q.2	E (b) [Express your answ Discuss Dijkstra's	ver as simply as po algorithm for <i>sing</i> egative weights? Ju	le source shorte	st paths problem. I	Does Dijkstra'	s algorithm work	[5]
Q.3					T in alphabetical o	order. Find th	e element whose	[5]
Q.3	(b) İ	f only the numbe		the number of n	nultiplications are y? - Strassen's algo			[5]
Q.4			rogramming appro mplexity of your a		algorithm to solve	e the 0/1 Kn	apsack problem.	[5]

Compute time complexity of your approach. Q.4(b) Design a dynamic programming algorithm for the 'change-making-problem'. Given an amount n and [5] unlimited quantities of coins of each of the denominations d_1, d_2, \ldots, d_m , find the smallest number of coins that add up to n or indicate that the problem does not have a solution.

Q.5(a) Explain how one can identify connected components of a graph by using depth-first-search algorithm. [5]

Q.5(b) What do you mean by a randomized algorithm? Discuss its various classes with suitable example(s). [5]

:::::27/11/2019:::::M