BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

CLA BRA	SS:	BE : BIOTECH	SEMESTER: VII SESSION : MO/2	2019
SUBJECT : BT7023 BIOREACTOR AND BIOPROCESS DESIGN				
тім	E:	1.5 HOURS	FULL MARKS: 2	25
 INSTRUCTIONS: The total marks of the questions are 30. Candidates may attempt for all 30 marks. In those cases where the marks obtained exceed 25 marks, the excess will be ignored. Before attempting the question paper, be sure that you have got the correct question paper. The missing data, if any, may be assumed suitably. 				
Q1	(a) (b)	Define Reactor and Bioreactor with suitable example. List the different components of a typical batch bioreactor.		[2] [3]
Q2	(a) (b)	Derive the performance equation of a MFR. A fed batch culture was operated with intermittent addition of glucose s rate of 200 ml/h. The values of Ks, μ m and D, are 0.3 g/L, 0.4 h ⁻¹ and 0.1 Determine the concentration of growth limiting substrate (g/L) in the steady state.	olution at a flow h ⁻¹ , respectively. reactor at quasi-	[2] [3]
Q3	(a) (b)	Name at least 2 bioreactors that you can use for animal cell culture. Prove that in a chemostat, at steady state and for sterile feed, μ = D.		[2] [3]
Q4		Consider the scale up of fermentation from a 10 L to 10,000 L vessel. The has a height to diameter ratio of 3. The impeller diameter is 30% of the Agitator speed is 500 rpm and three impellers are used. Determine the d large fermenter and agitator speed for constant P/V and constant impel	small fermenter e tank diameter. imensions of the ler tip speed.	[5]
Q5	(a) (b)	Write the mathematical expression of Monod chemostat model. A chemostat is operated at a dilution rate of 0.6 h^{-1} . At steady sta concentration in the exit stream was found to be 30 g/L. Calcula productivity (g/L. h) after 3 h of steady state operation.	te, the biomass ate the biomass	[2] [3]
Q6	(a) (b)	Write the importance of determining K_La . Describe the dynamic method of determination of K_La for aerobic ferme	ntation.	[2] [3]

:::: 20/09/2019M ::::::