BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

CLASS: BE BRANCH: BIOTECHNOLOGY

removed in the tank.

SUBJECT : BT5027 REACTION ENGINEERING

SEMESTER: V

SESSION: MO/2019

TI	۸E:	1.5 HOURS FULL MARKS:	25
 INSTRUCTIONS: The total marks of the questions are 30. Candidates may attempt for all 30 marks. In those cases where the marks obtained exceed 25 marks, the excess will be ignored. Before attempting the question paper, be sure that you have got the correct question paper. The missing data, if any, may be assumed suitably. 			
Q1	(a) (b)	Differentiate between 'Elementary' and 'non-Elementary' reaction. Milk is pasteurized if it is heated to 63 °C for 30 min, but if it is heated to74°C it only needs 15 s for the same result. Find the activation energy of this sterilization process.	[2] [3]
Q2		Derive the first order rate equation in terms of conversion by integral method. After 8 min in a batch reactor, reactant ($C_{A0} = 1 \text{ mol/L}$) is 80% converted; after 18 min, conversion is 90%. Find a rate equation to represent this reaction.	[2] [3]
Q3		Prove that, for a constant volume process, $T_{Batch} = T_{PFR}$	[5]
Q4		For the reaction $A \rightarrow R$, second-order kinetics and $C_{A0} = 1 \text{ mol/L}$, we get 50% conversion after 1 hour in a batch reactor. What will be the. (i) conversion and (ii) concentration of 'A' after 1 hour if $C_{A0} = 10 \text{ mol/L}$?	[2+3]
Q5	(a) (b)	For the reaction A \rightarrow 4R; with 30% inert present. Calculate ϵ_A . A stream of pure gaseous reactant A (C_{A0} = 660 mmol/L) enters a PFR at a flow rate of F_{A0} = 540 mmol/min and polymerizes there as follows: 3A \rightarrow R; - r_A = 54 mmol/L. min. How large a reactor is needed to lower the concentration of A in the exit stream to C_A = 330 mmol/L?	[2] [3]
Q6	(a) (b)		[2] [3]

:::::: 24/09/2019 :::::E