BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

		(END SEMESTER EXAMINATION)						
CLASS: BRANCH		ECH DTECHNOLOGY	SEMESTER : III SESSION : MO/19					
SUBJECT: BE206 CHEMICAL PROCESS CALCULATIONS								
TIME:	3.0	0Hrs.	FULL MARKS: 50					
2. Atter 3. The r 4. Befor	question mpt all o missing re atten	n paper contains 5 questions each of 10 marks and total 50 marks. questions. data, if any, may be assumed suitably. npting the question paper, be sure that you have got the correct question hand book/Graph paper etc. to be supplied to the candidates in the exan	nination hall.					
Q.1(a)		ctrolysing a mixed brine, a gaseous mixture is obtained at the cathode has a size of $(200, 200, 200, 200, 200, 200, 200, 200,$		[5]				
Q.1(b)	(ii) Ave Glucose	sition by weight: $Cl_2 = 67\%$, $Br_2 = 28\%$, $O_2 = 5\%$ Calculate: (i) Composition of erage molecular weight (iii) Density of gas mixture at 298 K and 1 atm. e reacts with oxygen to produce carbon dioxide and water:	n of the gas by volume [5]					
	Just be used by not run candy l the equ	$_{6}$ (S) + $6O_{2}(g) \rightarrow 6CO_{2}(g) + 6H_{2}O(l)$ efore a process calculation exam, suppose a friend reminds you that glucose y the human brain. You therefore decide to eat a candy bar to make sure th n out of energy during the exam (even though there is no direct evidence th bars improves performance on process calculation exams). If a typical 2 oz uivalent of 45.3 g of glucose and the glucose is completely converted to car am, how many grams of carbon dioxide will you produce and exhale into the	at your brain does hat consumption of candy bar contains bon dioxide during					
Q.2(a)	Xylene	lation column separates 20% C_6H_6 , 50 % Toluene, 30 % Xylene into 95 % C_6H_6 , and waste product containing 2 % C_6H_6 . Calculate the quantities of distillate 'h of feed is fed.		[5]				
Q.2(b)	Soyabe 69.5% s The ca	can seeds oil is extracted with hexane in a batch extractors. The flaked seeds solid and 12.3% moisture. At the end of the process, cake is separated from h ke analysis yields 0.8% oil, 88.2% solids and 11.0% moisture. Find the percer- percentage are by weight.	exane oil mixture.	[5]				
Q.3(a)		Deacon process for the manufacture of chlorine, HCl and O_2 react to form Cl_2 mole% O_2 , 79% N_2) is fed to provide 35% excess oxygen and the fractional c		[5]				
	fractio	nine the amount of air required per mole of HCl fed into the process. C ns of the product stream components using ecular species balances (ii) atomic species balances (iii) extent of reaction	alculate the mole					
Q.3(b)	The re	vaction between ethylene and hydrogen bromide to form ethyl bromide i uous reactor. HBr $\rightarrow C_2 H_5 Br$	s carried out in a	[5]				
	The pro	oduct stream is analyzed and found to contain 51.7 mole% C_2H_5Br and 17.3% actor contains only ethylene and hydrogen bromide.	6 HBr. The feed to					
	Calcula	ate the fractional conversion of the limiting reactant and the percentage b nt is in excess. If the molar flow rate of the feed stream is 165 mol/s, wh						
Q.4(a)	hypoth to 37 ° heat ca	blood is refrigerated for storage, it is warmed before contact with a permia. Calculate the rate of heat required to continuously warm 10 L/min of C using an electric heater. A stirrer adds work to the system at a rate of 0. apacity of blood is constant at 4.185 J/g. ° C and the density of blood is 1 g/m tank is 1 L.	blood from 30 ° C 50 kW. Assume the	[5]				
Q.4(b)	To ster 175 g/r leaving the req pressur Given [rilize a fermenter, two streams of water are fed. Feed 1 is 120 kg/min at 3 min at 65° C. The pressure inside the fermenter is 17 bar (absolute) and 295 g as saturated steam. The exiting steam leaves the fermenter through a 6-cm quired heat input to the fermenter in kJ/min if the steam leaving is saturate re. Neglect kinetic energies of the liquid inlet streams. Data: Specific enthalphy for H ₂ 0 (l) at 30 ° C = 125.7 kJ/kg ic enthalphy for H ₂ 0 (l) at 65 ° C = 271.9 kJ/kg	kg of water vapour ID pipe. Calculate	[5]				
		ic enthalphy for saturated vapour H_20 (v) at 17 bar = 2793.4 kJ/kg at 204° C		РТО				

Q.5(a) (i) Write about relative Humidity?

(ii) Toluene is to be heated from 290 K to 350 K at the rate of 250 g/s. Calculate the heat to be									
supplied to toluene using the heat capacity data given below. $C = a+bT+cT^2+dT^3$, kJ/ (kmol_K)									
	Component	а	b	С	d				
	Toluene	1.80836	812.223x 10 ⁻³	1512.67x10 ⁻⁶	1630.01x10 ⁻⁹				

Q.5(b) Calculate the heat of formation of liquid 1-3 butadiene at 298.15 K using the following data. [5] Standard heat of formation of $CO_2 = -393.51 \text{ kJ/mol}$ Standard heat of formation of $H_2O = -285.83 \text{ kJ/mol}$ Heat of combustion of C_4H_6 (l) at 298 K = -2520.11 kJ/mol

:::::09/12/2019M:::::

[5]