BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH:	BE BT	SEMESTER : III SESSION : MO/19		
		SUBJECT: BE205 BASICS OF BIOINFORMATICS		
TIME:	3.00Hrs.		FULL MARKS: 50	
INSTRUCT	IONS:			
1. The que	estion paper cor	itains 5 questions each of 10 marks and total 50 marks.		
2. Attemp	t all questions.	and the second of Matt		
3. The mis	ssing data, if any	, may be assumed suitably.		
4. Before	attempting the o	question paper, be sure that you have got the correct qu	uestion paper.	
5. Tables/	Data hand book	/Graph paper etc. to be supplied to the candidates in the	e examination hall.	
0 1 (a) W	/hat are Drimary	Composite and Secondary databases of Nucleis asids and	Drotoin?	

- Q.1(a) What are Primary, Composite, and Secondary databases of Nucleic acids and Protein? [5] Briefly describe following databases: CATH, NCBI; TIGR, RCSB.
- Q.1(b) Illustrate four different file formats used in bioinformatics to restore information regarding sequences [5] and structures with example.
- Q.2(a) Compose the sequence searching algorithm FASTA stepwise (theory and types). [5] For the following two sequences, Calculate to total score with linear and affine gap penalty: [mismatch :-4, match: +8; Gap opening penalty -2 and gap extension penalty -1]

-4,	match:	+8;	Gap	opening	pena	alty -	2 anc	l gap	exte	nsion	penalty
s	Т	С	Α	G	А	С	G	А	G	Т	G
+	т	C		G	٨	G	C	т	G		
ι	1	C		U	A	U	C	1	U		
										—	-

Q.2(b) What is Sum of pairs method in multidimensional dynamic programming? Using N-W algorithm for Global Alignment used in Dynamic Programming, complete the following alignment matrix (array) and predicts the possible alignment, (mismatch : -4, match: +8; Gap penalty:2

,				J () ()	
0	T (-2)	C (-4)	G (-6)	C (-8)	A(-10)
T (-2)					
C (-4)					
~ /					
C(-6)					
A(-8)					

- Q.3(a) Evaluate the followings: molecular clock, Phylogenetic tree, DNA substitution model. [5]
- Q.3(b) Synthesize the stepwise methodology for building phylogenetic tree: UPGMA method and maximum [5] parsimony method with proper example.
- Q.4(a) What is protein secondary and quaternary structures formation? Develop and state the algorithms for [5] Protein secondary structure prediction methods: PSI-Pred using neural networks (ANN).
- Q.4(b) Evaluate RMSD value, Propensity and Ramachandran plot. Write algorithms for the Homology modelling [5] for protein sequence analysis.
- Q.5(a) Briefly discuss Chemoinformatics and System Biology with different softwares.
- Q.5(b) What are different super secondary structures of protein? Build the position weight matrix using log odd [5] values (PWM) for following motif, ataaac agcgat; gcccag; gtatac; cattca. Also calculate the motif similarity index for motif tcctca.

:::::06/12/2019M::::

[5]

[5]