
BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCI	B.ARCH H: ARCHITECTURE		SEMESTER : I SESSION : MO/19		
TIME:	3 HOURS	SUBJECT: AR204 STRUCTURAL MECHANICS	FULL MARKS: 50		
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 					
Q.1(a)		ess shown in Fig.1 draw Mohr's circle. From th es and locations of principal planes. (σ_x =-8, σ_y = 12 MPa			

[5]

MPa 5

8 MPa

- What is pure bending? What are the assumptions made in deriving the bending equation Q.2(a)
- [5] Q.2(b) A timber beam carries a uniformly distributed load of 15 kN/m over its entire simply supported span of [5] 4m. If the permissible shear stress for timber is 0.8 MPa , design a suitable rectangular beam section based on permissible shear stress. Take the width of rectangular beam as one- third of its depth.
- Q.3(a) Write down the theorems of area-moment method and explain them.

Q.3(a)	Write down the theorems of area-moment method and explain them.	[5]
Q.3(b)	A simply supported beam of length L carries a uniformly distributed load w per unit span over the entire	[5]
	length of the beam. Develop the expression for the maximum deflection of the beam using double	
	integration method. The flexural rigidity of the beam=EI.	

- Q.4(a) Explain with an example how strain energy is used to find the deflection of a beam? [5] Q.4(b) Using Castigliano's theorem, determine the deflection at the free end of a cantilever beam of length L [5] due to a concentrated load W at the free end.
- Q.5(a) What is slenderness ratio? How slenderness ratio determines the type of column? [5] Q.5(b) Derive Euler's formula when one end of the column is fixed and other end free. [5]

:::::04/12/2019:::::M