BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	M.TECH I: SER	SEMESTER : I SESSION : MO/18	3
	SUBJECT: SR504 FUNDAMENTALS OF COMBUSTION		
TIME:	3 HOURS	FULL MARKS: 50)
INSTRUC	CTIONS:		
1. The c	question paper contains 5 questions each of 10 marks and total 50 marks.		
3. The r	nissing data, if any, may be assumed suitably.		
4. Befor	e attempting the question paper, be sure that you have got the correct q	uestion paper.	
5. Table	s/Data hand book/Graph paper etc. to be supplied to the candidates in th	e examination hall.	
Q.1(a)	What are the various methods of determining the adiabatic flame temperatur	e? Explain the iterative	[4]
	method for determining the adiabatic flame temperature.		
Q.1(b)	The gasoline (represented by C_8H_{18}) is burnt with dry air. The volumetric ana basis is CO2 = 10.02%, O2 = 5.62%, CO = 0.88% and N2 = 83.48%. Determine (lysis of products on dry a) A/F ratio	[6]

- (b) equivalence ratio (c) % stoichiometric air used.
- Q.2(a) What is a second order reaction? Explain with example. Derive the equation for rate constant and [5] half-life of a second order reaction.
- Q.2(b) A first order reaction is 30% complete at the end of 140 s. Estimate the value of reaction rate [5] constant in s-1. How much time will it take to complete 60% of reaction?
- Q.3(a) Determine the salient properties that influence the operational behavior of premixed flames and [5] diffusion flames. Examine critically the mechanism of flame stabilization of a combustion wave using the concept of gas velocity and burning velocity in open atmosphere above the burner rim. What is flame quenching and important factors affecting it?
- Q.3(b) How interaction of flame and flow in burner effects the flame stabilization? Distinguish [5] characteristic stability areas and condition of lift off and blow off with variation of fuel concentration and flow velocity for open flames.
- Q.4(a) Distinguish between deflagration, detonation and explosion phenomenon. Illustrate the mechanism [5] of deflagration to detonation transition and the combustion waves associated with them.
- Q.4(b) Deduce an expression from the fundamental equations of continuity, momentum and energy to [5] evaluate net energy change in a detonation wave and detonation velocity.
- Q.5(a) Predict various factors that can influence the combustion of a composite solid propellant in a rocket [5] motor. Also assess the various flame zones one may observe during the combustion process.
- Q.5(b) Select the most critical physical/chemical process in combustion of a liquid rocket engine. Support [5] your selection with arguments on its impact on various ballistic parameters.

:::::05/12/2018:::::M