BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	MTECH I: SER		SEMESTER : I SESSION : MO/18	
TIME:	3:00 HRS.	SUBJECT: SR502 ELEMENTS OF AERODYNAMIC	S. FULL MARKS: 50	
INSTRUC 1. The c 2. Atten 3. The n 4. Befor 5. Table	CTIONS: question paper conta npt all questions. nissing data, if any, re attempting the qu ss/Data hand book/G	ins 5 questions each of 10 marks and total 50 m may be assumed suitably. estion paper, be sure that you have got the corr raph paper etc. to be supplied to the candidates	narks. rect question paper. s in the examination hall.	
Q.1(a)	Describe the fundamental difference between the conservation and non-conservation form of fundamental governing equations of flow. What are the potential uses and its advantages in implementation of such forms?			[5]
Q.1(b)	Differentiate betw perpendicular.	een stream function and velocity potential.	Show that they are mutually	[5]
Q.2(a)	Construct an equati	on which states that when the velocity increases	the pressure decreases and vice	[5]
Q.2(b)	Using Kutta Joukow directly proportiona	/ski theorem and theory of transformation, show \mathfrak{l} to 2π	w that the coefficient of lift is	[5]
Q.3(a)	Use Kutta condition	to demonstrate flow around a finite angle and a	a cusped trailing edged aerofoil.	[5]
Q.3(b)	Show that the quart aerofoil.	er chord point is the centre of pressure and aero	dynamic centre for a symmetric	[5]
Q.4(a)	Explain the process	of simulation of a finite wing surface using bound	and free vortices.	[5]
Q.4(b)	Point out the result	s obtained for a specific wing having elliptical lift	distribution.	[5]

- Q.5(a) Obtain and illustrate an expression for the momentum thickness.Q.5(b) Demonstrate with suitable diagrams what are the causes of Couette backflows? Explain. [5] [5]

:::::07/12/2018 M:::::