BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	IMSC. H: FOOD TECH.	(,	SEMESTER : VII SESSION : MO/18	
TIME:	03:00	SUBJECT: SAF1005 ADVANCED FOOD ENGINEERING	FULL MARKS: 60	
INSTRU 1. The 2. Cand 3. The 4. Befo 5. Table	CTIONS: question paper cont lidates may attempt missing data, if any, re attempting the ques/Data hand book/C	ains 7 questions each of 12 marks and total 84 marks. any 5 questions maximum of 60 marks. may be assumed suitably. Jestion paper, be sure that you have got the correct qu iraph paper etc. to be supplied to the candidates in the	uestion paper. e examination hall.	
Q.1(a) Q.1(b)	Cite the two examples of non-Newtonian fluids in food industry. A glass capillary viscometer when used on a fluid with a viscosity of 10 centipoises allowed the fluid to efflux in 1.5 minutes. This same viscometer used on another fluid allowed an efflux time of 2.5 minutes. If the densities of the two fluids are the same, calculate the viscosity of the second fluid.			
Q.1(c)	An orifice meter is being designed to measure steam flow in a food processing plant. The steam has a mass flow rate of approximately 0.1 kg/s in a 7.5 cm diameter (ID) pipe with a pressure of 198.53 kPa. Determine the density of the manometer fluid to be used so that pressure differences can be detected accurately and reasonably. A manometer of less than 1 m in height can be considered reasonable. The Steam density is 1.12 kg/m ³ and Orifice coefficient is 0.61 at N _{Re} = 30,000.			[6]
Q.2(a) Q.2(b)	Cite the application Show the schematic	of plate heat exchanger and shell and tube heat exchang of flow pattern in plate heat exchanger and in a 1-2	ger in food industry. pass shell and tube heat	[2] [4]
Q.2(c)	Cold storage wall (W/[m°C]). Insulation 500 W. If the therm of the insulation. Th is 5°C.	3 m× 6m) is constructed of 15 cm thick concrete (ther on must be provided to maintain a heat transfer rate thro al conductivity of the insulation is 0.04 W/(m°C), compu- ie outside surface temperature of the wall is 38°C, and the	mal conductivity is 1.37 ough the wall at or below te the required thickness e inside wall temperature	[6]
Q.3(a) Q.3(b)	Compare between of Find the dew-point temperature of 35°	ry bulb, wet bulb temperature and adiabatic saturation t temperature, humid volume, and relative humidity of C and a wet bulb temperature of 30°C.	temperature. of air having a dry bulb	[4] [8]
Q.4(a) Q.4(b)	Cite examples of un Salt is being used to is 0.539 kg/kg salt diffusivity of salt i average concentrat	steady state mass transfer in food industry. preserve a 5 mm slice of salmon muscle. The con-centrat free salmon (SFS), and the initial concentration is 0.01 n salmon muscle is 8.78×10 ⁻¹¹ m ² /s, determine the tim fon to reach 0.4 kg/kg SFS.	tion of salt at the surface 3 kg/kg SFS. If the mass e required for the mass	[2] [4]
Q.4(c)	A rectification colu	mn is available to recover 95% of the ethanol contained	I in an aqueous mixture,	[6]

with a composition in mole for which the volatile component is 50%. Feed is introduced as a liquid - vapor mixture containing 50% liquid. When the column operates with a reflux ratio 2.5 a waste stream containing 90% water weight is obtained. Determine: (a) molar composition of the distillate; (b) number of plates required if the global efficiency of the column is 80%.

The equilibrium diagram is obtained from the equilibrium data of the ethanol-water system given as follow

x	у	x	y
0.01	0.103	0.50	0.652
0.03	0.235	0.60	0.697
0.05	0.325	0.70	0.753
0.10	0.444	0.80	0.818
0.20	0.529	0.85	0.856
0.30	0.573	0.87	0.873
0.40	0.613	0.894	0.894

Q.5(a)	Define osmotic pressure. How is it related to reverse osmosis?	[2]
Q.5(b)	Estimate the osmotic pressure of orange juice with 17% total solids at 20°C. Cite the application of reverse osmosis.	[4]
Q.5(c)	Cite the application of electrodialysis. Briefly explain the working principle of electrodialysis.	[6]
Q.6(a)	Name different dry and wet methods of solid separation.	[2]
Q.6(b)	Calculate the sphericities of the followings a cylindrical bar with height = 5 times the diameter a rectangular prism of sides a , $2a$, and $3a$.	[4]
Q.6(c)	The damage to blueberries and other fruits during handling immediately after harvest is closely related to the terminal velocity in air. Compute the terminal velocity of a blueberry with a diameter of 0.60 cm and density of 1120 kg/m ³ in air at 21°C and atmospheric pressure. Given: viscosity of fluid=1.828×10 ⁻⁵ kg/ms, $\rho_f = 1.2$ kg/m ³ .	[6]
Q.7(a)	Cite the application of extrusion process in food industry.	[2]
Q.7(b)	Differentiate between cold extrusion and extrusion cooking.	[4]
Q.7(c)	With a schematic explain the mechanism of extrusion process.	[6]

******30.11.18*****M

Figure: 1

