BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	B.PHARM SEN I: PHARMACY SES	ESTER : VII SION : MO/18
TIME:	SUBJECT: PS7403 BIOPHARMACEUTICS AND PHARMACOKINETICS 3.00 HOURS FUL	L MARKS: 60
INSTRUC 1. The c 2. Cand 3. The r 4. Befor 5. Table	CTIONS: question paper contains 7 questions each of 12 marks and total 84 marks. lidates may attempt any 5 questions maximum of 60 marks. missing data, if any, may be assumed suitably. re attempting the question paper, be sure that you have got the correct question pape es/Data hand book/Graph paper etc. to be supplied to the candidates in the examinati	er. on hall.
Q.1(a) Q.1(b) Q.1(c)	Differentiate between Absolute and Relative bioavailability. Explain major rate limiting steps of an orally administered drugs. Write short notes on Diffusion layer model and Danckwert's model of drug dissolution	[2] [4] [6]
Q.2(a) Q.2(b) Q.2(c)	Define following terms (i) bioequivalence and (ii) pharmaceutical equivalents. Discuss Biopharmaceutics Classification System of Drugs. Discuss in detail about particle size and effective surface area in the drug's absorption.	[2] [4] [6]
Q.3(a) Q.3(b) Q.3(c)	Write Henderson-Hasselbach equation for weak acid and weak base. Write short note on pH Partition hypothesis. What are the major limitations of pH-Partition hypothesis?	[2] [4] [6]
Q.4(a) Q.4(b) Q.4(c)	Discuss the influence of disintegration time on drug absorption. Discuss following factors in absorption of drug (i) Gastric emptying time and (ii) Gastroin Write short notes on (i) Pre-systemic metabolism and (ii) Everted sac technique to measur	[2] testinal pH [4] e drug uptake. [6]
Q.5(a) Q.5(b) Q.5(c)	Explain volume of distribution and its significance. Discuss method of trapezoid to estimate AUC _{0-n} . How will you estimate residual $AUC_{n-\infty}$. The equation that best fits the pharmacokinetics of paracetamol after oral administration dose is C=3.76 (e ^{-0.24t} -e ^{-1.6t}). Assuming one compartment kinetics calculate: (i) Peak time (ii) Peak plasma concentration (iii) Elimination half-life	[2] [4] ion of 500 mg [6]
Q.6(a) Q.6(b)	Discuss assumptions of urinary excretion method to estimate pharmacokinetic parameter Calculate the $AUC_{n-\infty}$ of given plasma concentration time data given orally. Given $K_E = 0$. Time (hr) 0 0.5 1.0 2.0 4.0 8.0 12.0 18.0 24.0 36.0 Construction (upper large state) 0 5 47 41 41 42 37 74 31 47 35 42 48 34 41 47 37 78	rs [2] 0678 h ⁻¹ [4] 48.0 72.0
Q.6(c)	Derive a suitable method to estimate absorption rate constant using method of residuals is administered orally conferring one compartment model. Comment if elimination rate i absorption rate.	vhen the drug [6] s greater than
Q.7(a)	Derive an equation to calculate loading dose (Xo), when the drug is to be administered or intervals with maintenance dose of (X). Assume that drug confers the character compartment model	ally after fixed [2] ristics of one
Q.7(b)	Assuming two cases, when infusion rate is stopped after achieving steady state and be steady state, derive a method to estimate Elimination rate constant (KE) considering one kinetics.	fore achieving [4] compartment
Q.7(c)	A drug eliminated from the body by capacity-limited pharmacokinetics has a K_M of 10 V_{max} of 50 mg/hr. If 400 mg of the drug is given to a patient by IV bolus injection, calculated for the drug to be 50% eliminated. If 320 mg of the drug is to be given by IV bolus inject the time for 50% of the dose to be eliminated. Explain why there is a difference in the elimination of a 400-mg dose compared to a 320-mg dose. Using the same drug, calculat 50% elimination of the dose when the doses are 10 and 5 mg. Explain why the times elimination are similar even though the dose is reduced by one-half.	0 mg/L and a [6] ulate the time tion, calculate e time for 50% e the time for 5 for 50% drug

:::::30/11/2018:::::M