BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI

					(ENI	D SEM	ESTER		NINÁT	ION)								
CLASS: BRANCH	BE PRODUC		1								-			SI SI	EMES ESSIO	TER N :	: V MO/1	8	
TIME:	3.00 HOI	URS	S	UBJEC	T: PE5	005 S	TATIS	TICAL	QUA	LITY	(CON	ITROL	-	F	ULL A	۸AR	KS: 6	0	
INSTRUC 1. The c 2. Candi 3. The r 4. Befor 5. Table	CTIONS: question pap idates may a nissing data, e attemptin es/Data hand	er co attem , if ar g the bool	ontain npt an ny, ma e ques k/Graj	s 7 qu y 5 qu ay be a tion p ph pap	estions estions assume aper, t per etc	s each s maxi ed suit be sur . to be	of 12 imum ably. e that e supp	2 mark of 60 : you l blied t	s anc mark nave g o the	d tot (s. got) car	al 84 the c ndida	l marl orrec tes in	ks. t ques the e	stion examii	paper	r. n ha	ull.		
Q.1(a) Q.1(b) Q.1(c)	List the dim What is qual These data frequency d	ensio lity c repr istrib	ons of ontrol esent oution	quality ? What the re for the	/? t are th ecord l e data	ne obje nigh te using :	ective: emper 7 class	s of qu rature: ses. Dr	uality s for raw fr	con eac equ	trol? h of ency	the 5 polyg	0 stat	tes. C d ogive	onstr e dias	uct gran	a gra	ouped	[2] [4] [6]
			112	100	127	120	13-	4 1	18	105	1	10	109	112					
			110	118	117	116	11	8 1	22	114	1	14	105	109					
			107	112	114	115	11	8 1	17	118	1	22	106	110					
			116	108	110	121	11	31	20	119	1	11	104	111					
		-	120	113	120	117	10	51	10	118	1	12	114	114					
Q.2(a)	Why two se characteris	epara stic?	ate co	ontrol	charts	are r	nainta	ained	while	e de	ealin	g witl	n a va	riable	e qua	lity	,		[2]
Q.2(b)	Frozen oran them from c whether, wh nonconform chart to imp	ge ju ardbo hen fi ing ca prove	iice is oard si illed, an has the fr	packe tock ar it coul s an in ractior	d in 6- nd atta d possi nprope n of nor	oz car ching a ibly le r seal nconfo	dboar a meta ak eitl on eit orming	d cans al bott her on her th cans	s. The om pa the s ne side produ	ese o anel side e se iced	cans a . By ir searr am o by th	are fo nspect n or ar r the nis ma	rmed tion of round bottor chine	on a r f a can the be m pan •	nachi , we i ottorr el. Se	ine l may 1 joi et u	oy sp dete nt. S pac	inning rmine Such a ontrol	[4]
	Sample No				1 2	3	4	5	6	7	8	9	10	11	12	13	14	15	
	Number of N	lon co	onform	ing	12 15	8	10	4	7	16	9	14	10	5	6	17	12	22	
	Sample No.				16 17	′ 18	19	20	21	22	23	24	25	26	27	28	29	30	
	Number of N	lon co	onform	ing	8 10) 5	13	11	20	18	24	15	9	12	7	13	9	6	
Q.2(c)	Parts manuf samples of	actur five p	red by parts e	an ir each a	ijectior re colle	n mou ected,	Iding and t	proce he cor	ss are npres	e sut sive	strer	ed to a ngths	a com in psi	pressi are sh	ve sti Iown	reng in Ta	th te able.	st. 15	[6]
	Number	1	2	3	4	5	6	7	8	8	9	10	11	12	1	3	14	15	
	x1	83	88.6	85.7	80.8	83.4	75.3	74.5	79.2	2 8	80.5	75.7	80	80.6	82.	7 7	79.2	85.5	

x2	81.2	78.3	75.8	74.4	78.4	79.9	78	84.4	86.2	75.2	81.5	81.8	81.3	74.9	82.1
x3	78.7	78.8	84.3	82.5	82.6	87.3	80.8	81.5	76.2	71.1	78.4	79.3	79.1	78.6	82.8
x4	75.7	71	75.2	74.1	78.2	89.7	73.4	86	64.1	82.1	73.8	73.8	82	77.7	73.4
x5	77	84.2	81	75.7	78.9	81.8	79.7	74.5	80.2	74.3	78.1	81.7	79.5	75.3	71.7

i) Compute control limits for the X-bar and R control charts.

ii) Establish X -bar and R control charts for compressive strength using these data.

ii) Is the process in statistical control?

For n=5: A2=0.58, A3=1.427, B3=0, B4=2.11, B5=0, B6=1.964, D1=0, D2=4.918, D3=0, D4=2.004

- Q.3(a) What is acceptance sampling? List the advantages and limitations of acceptance sampling.
- Q.3(b) Consider a single sampling plan N = 1500, n = 200, c = 3. Construct the OC curve. If the acceptable quality [8] level is 0.05% nonconforming and the limiting quality level is 6% nonconforming, describe the protection offered by the plan at these quality levels.

[4]

- Q.4(a) Explain the meaning and importance of the average outgoing quality limit.
- [2] A sampling plan is desired to have a producer's risk of 0.05 at AQL = 0.9% and a consumer's risk of 0.10 [4] Q.4(b) at LQL = 6.5% nonconforming. Find the single sampling plan that meets the consumer's stipulation and comes as close as possible to meeting the producer's stipulation.
- Q.4(c) With the help of an example discuss the multiple sampling plans? How will you calculate the probability [6] of making decisions at level 1, 2 and 3?
- Q.5(a) An amplifier has an exponential time-to-failure distribution with a failure rate of 8% per 1000 hours. What [2] is the reliability of the amplifier at 5000 hours? Find the mean time to failure.
- Q.5(b) From reliability point of view describe the life cycle of a product. What probability distributions would [4] you use to model each phase?
- Q.5(c) Find the reliability of the eight-component system shown in Figure. The reliabilities of the components [6] are as follows: $R_{A1} = 0.92$, $R_{A2} = 0.90$, $R_{A3} = 0.88$, $R_{A4} = 0.96$, $R_{B1} = 0.95$, $R_{B2} = 0.90$, $R_{B3} = 0.92$, and $R_{Cl} = 0.91$ 0.93.

[2] Q.6(a) Define Quality circle. Explain its concept. What is ISO 9000 series of standards. What are its advantages and limitations? Q.6(b) [4] Q.6(c) Describe briefly [6] i. Pareto Analysis ii. Scatter Diagrams iii. Cause-and-Effect Diagrams Q.7(a) Explain the concept of 'total Quality Control'. [2] What is a six sigma process? Why it is assumed that Six Sigma process would produce about 3.4 ppm Q.7(b) [4] defective instead of 0.002 ppm defectives? Q.7(c) List the important points of Deming philosophy for implementing quality and productivity improvement? [6]

:::::26/11/2018::::E

					λ=	np				
X	0.01	0.07	0.08	0.50	0.60	0.90	1.50	1.80	2.10	2.40
1	1.0000	0.9977	0.9970	0.9098	0.8781	0.7725	0.5578	0.4628	0.3796	0.3084
2	1.0000	0.9999	0.9999	0.9856	0.9769	0.9371	0.8088	0.7306	0.6496	0.5697
3	1.0000	1.0000	1.0000	0.9982	0.9966	0.9865	0.9344	0.8913	0.8386	0.7787
					λ=	np				
X	2.70	3.00	3.60	4.20	4.50	5.10	6.00	6.60	7.20	7.50
1	0.2487	0.1991	0.1257	0.0780	0.0611	0.0372	0.0174	0.0103	0.0061	0.0047
2	0.4936	0.4232	0.3027	0.2102	0.1736	0.1165	0.0620	0.0400	0.0255	0.0203
3	0.7141	0.6472	0.5152	0.3954	0.3423	0.2513	0.1512	0.1052	0.0719	0.0591
					λ=	np				
X	8.10	8.20	8.30	8.40	8.50	8.60	8.70	8.80	8.90	9.00
1	0.0028	0.0025	0.0023	0.0021	0.0019	0.0018	0.0016	0.0015	0.0014	0.0012
2	0.0127	0.0118	0.0109	0.0100	0.0093	0.0086	0.0079	0.0073	0.0068	0.0062
3	0.0396	0.0370	0.0346	0.0323	0.0301	0.0281	0.0262	0.0244	0.0228	0.0212

Table 1: Cumulative Poisson Probabilities

Table2: Value of np for a producers Risk of 0.05 and a consumers Risk of 0.10 (Grubbs table)

Acceptance number, c	Pa= 0.95, np1	Pa= 0.1, np2	Np2/np1
0	0.051	2.303	44.84
1	0.355	3.890	10.96
2	0.818	5.322	6.51
3	1.366	6.681	4.89
4	1.970	7.994	4.06