BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCI	BE H: PROD.		SEMESTER : V SESSION : MO/18	
TIME:	3 HOURS	SUBJECT: PE5003 MACHINE TOOL DESIGN	FULL MARKS: 60	
INSTRU 1. The 2. Canc 3. The 4. Befo 5. Tabl	CTIONS: question paper contain didates may attempt an missing data, if any, m re attempting the que es/Data hand book/Gra	ns 7 questions each of 12 marks and total 84 marks. ny 5 questions maximum of 60 marks. nay be assumed suitably. stion paper, be sure that you have got the correct quaph paper etc. to be supplied to the candidates in the	estion paper. e examination hall.	
Q.1(a) Q.1(b)	How machining time f A 250 mm long job is the cutting speed is 5 cut of 5 mm. Assume	or a blind hole drilling is estimated? to be machined by a plain milling cutter of diameter D 0 m/min and feed is 0.1 mm/tooth, calculate the mach 10 mm approach length and 10 mm over travel.	= 60 mm and 15 teeth. If ining time for a depth of	[2] [4]
Q.1(C)	between positive-acti	on clutch and friction clutch.	struction and operations	[6]
Q.2(a) Q.2(b) Q.2(c)	Why variation of spind Derive the expression How Norton's gear me	lle speed is a necessity? for calculating maximum productivity loss in stepped s chanism is used for speed regulations in feed boxes?	peed regulations.	[2] [4] [6]
Q.3(a) Q.3(b)	Classify stepless drive Design a 2- stage, 9 sp rpm input motor, and transmission for reduc i. Draw opti ii. Determine Use standard value of	s. beed gear box, for 30 to 500 rpm spindle speeds. Draw calculate the number of teeth for all gears, minimum ting motor speed to a level, suitable for the gear box in mum structural and ray diagrams. The number of teeth of different gears and shaft sizes φ	a ray diagram for a 1500 no of teeth=20. Use belt put shaft.	[2] [10]
Q.4(a) Q.4(b)	What are the differen Prove that if the failu volume of the mild st iron beam. Mild steel - E= 2.3 x 10 Cast Iron - E= 1.0 x 10 E = Modulus of elastic	t types of forces generally act on a machine tool struct re of the beam is determined by the normal stresses u eel beam required to withstand the same load is 7 tim 0^4 kg/mm^2 , $\sigma = 8 \text{ kg/mm}^2$, $\delta = 0.0025 \text{ mm}$ $^4 \text{ kg/mm}^2$, $\sigma = 2 \text{ kg/mm}^2$, $\delta = 0.0025 \text{ mm}$ ity, $\sigma = \text{Allowable stress}$, $\delta = \text{Allowable deflection}$.	ure? nder tensile loading, the nes less than that of cast	[2] [10]
Q.5(a) Q.5(b)	What do you mean by Find out the forces a turning operation.	hydrostatic slideways? cting on the mating surfaces in a combination of 'V' a	and 'Flat' slideways in a	[2] [10]
Q.6(a) Q.6(b) Q.6(c)	Define rigidity and sta What are the measure Explain the single deg	bility. es can be taken to reduce vibration in machine tools? ree of freedom chatter based on velocity principle.		[2] [4] [6]
Q.7(a) Q.7(b) Q.7(c)	Discuss the various erg What are the basic fu What do you understa	gonomic consideration applied to the design of push bu nctions and requirements of control elements in machir nd by individual control system and centralized control	ttons. ne tool? system?	[2] [4] [6]

:::::03/12/2018:::::E