BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

	(END SEMESTER EXAMINATION)		
CLASS: BRANCH	BE I: CHEM. ENGG. / CEP&P	SEMESTER : VII SESSION : MO/18	3
TIME:	SUBJECT: PC7009 POLYMER COMPOSITE 3:00 HRS.	FULL MARKS: 60)
 INSTRUCTIONS: 1. The question paper contains 7 questions each of 12 marks and total 84 marks. 2. Candidates may attempt any 5 questions maximum of 60 marks. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 			
Q.1(a) Q.1(b) Q.1(c)	Distinguish between laminates and hybrid composite. What do you mean by composite? What is the role of interface in composite? What are the different compounding ingredients used in short fibre reinforced po Give example of each. What is the function of low profile additives?	olymer composite.	[2] [4] [6]
Q.2(a) Q.2(b) Q.2(c)	What are the various ways to join the composite? Derive expressions for average fiber stress for fibers of different lengths. Explain with diagram of filament winding process. Give the advantages of filament winding over Hand lay up process.		[2] [4] [6]
Q.3(a) Q.3(b) Q.3(c)	Why oxidation is essential steps in c-fiber making process from PAN precursor? What function offers by initiating and participating comonomer. Give example of Initiating and participating comonomer. How it affect the processing of carbon fibre? Distinguish between continuous and marble process for glass fibre preparation		[2] [4] [6]
Q.4(a) Q.4(b) Q.4(c)	What do you mean by nanocomposte? How surface area affect the overall change of modulus of a nanocomposite. What are the various ways of surface modification of nano filler?		[2] [4] [6]
Q.5(a) Q.5(b) Q.5(c)	What is Reaction injection moulding?. Distinguish between SMC & DMC. Gives example of SMC & DMC compound. Briefly describe pultrusion process with diagram. What type of mold gives better in & why?	nner surface finish	[2] [4] [6]
Q.6(a) Q.6(b) Q.6(c)	Distinguish between prepreg & perform. Why hand lay up techniques is useful for making large article? What is spray up techniques? What are the advantages of spray up techniques techniques?	over hand lay up	[2] [4] [6]
Q.7(a) Q.7(b)	Derive the equation of modulus of elasticity of a unidirectional composite in long (direction of alignment). A continuous and aligned glass fiber-reinforced composite consists of 40 vol% of g a modulus of elasticity of 47 GPa and 60 vol% of a polyester resin that, when had modulus of 2.9 GPa.	glass fibers having rdened, displays a	[4] [8]
	(a) Compute the modulus of elasticity of this composite in the longitudinal direct (b) If the cross-sectional area is 215 mm2 and a stress of 40 MPa is applied ir direction, compute the magnitude of the load carried by each of the fiber and m	this longitudinal	

:::::07/12/2018 M::::::