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Q.1(a) Consider a DMS with source probabilities {0.30, 0.25, 0.20, 0.15, 0.10}. Find the source entropy, 
H(X). 

[2] 

Q.1(b) Prove that the entropy for a discrete source is a maximum when the output symbols are equally 
probable. 

[4] 

Q.1(c) Define mutual information and prove the following equation for chain rule for mutual information                          
                                 I(X1,X2,…..Xn; Y) =  ∑I(Xi;Y|Xi-1,Xi-2,………X1);  where i=1 to n. 

[6] 

   
Q.2(a) Define prefix coding with an example. [2] 
Q.2(b) Determine the minimum information rate necessary to represent the output of a discrete time, 

continuous memoryless Gaussian source with known variance considering a mean square-error 
distortion measure per symbol. 

[4] 

Q.2(c) Consider Lempel Ziv encoding for quaternary data (symbols: 0, 1, 2, 3). Encode the following 
quaternary data: 1 3 3 0 0 2 0 2 1 1 1 3 0 0 0 0 2 2 1 2 2 2 3 3. What is the compression ratio 
obtained? 

[6] 

   
Q.3(a) Define Binary Erasure Channel. [2] 
Q.3(b) Find the overall channel capacity of three cascaded BSC channels with transition probabilities 0.0, 

0.2 and 0.3 respectively. 
[4] 

Q.3(c) Discuss the channel capacity for MIMO system. [6] 
   

Q.4(a) Explain Hamming code. [2] 
Q.4(b) Provide the basic conditions for a perfect code and a maximum distance separable code. Consider 

the polynomials f(x)=2+x+x2+2x4 and g(x)=1+2x2+2x4+x5 over GF(3). Then determine f(x) + g(x). 
[4] 

Q.4(c) What is the order of Galois extension field GF(24)? In the same field compute α17 × α15 in terms of 
their field elements. Prepare table for multiplicative inverse and additive inverse of GF(22) with 
irreducible polynomial x2 + x + 1.   

[6] 

   
Q.5(a) Briefly explain BCH code. [2] 
Q.5(b) For nonsystematic coding in (7, 3) cyclic code (under GF (2)) with generator polynomial g(x) = 

(1+x)(x3+x+1)  Generate all possible codewords and determine parity check matrix, H. 
[4] 

Q.5(c) For (7, 3) code the generator polynomial of a systematic coding is given as: g(x)=x4+x3+x2+1. Let 
the message vector is, m = (1, 0, 1) then determine the code vector. Also design the corresponding 
encoder. 

[6] 

   
Q.6(a) Define constraint length of a convolutional encoder. [2] 
Q.6(b) Describe Viterbi decoding of convolutional codes with its advantages.  [4] 
Q.6(c) For the rational systematic encoder with matrix transfer function 
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Determine the code rate and draw the systematic convolutional encoder along with its state 
diagram. 

[6] 

   
Q.7(a) Elaborate Caesar cipher with an example. [2] 
Q.7(b) What is the difference between a message authentication code (MAC) and one-way hash function. [4] 
Q.7(c) Explain public key cryptography with a suitable example.                                                     [6] 
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