BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

	(END SEMESTER EXAMINATION)		
CLASS: BRANCI	BE H: ECE	SEMESTER : VI SESSION : MO/18	1
TIME:	SUBJECT: MEC1125 INFORMATION THEORY & CODING 3 HRS.	FULL MARKS: 60	
 INSTRUCTIONS: 1. The question paper contains 7 questions each of 12 marks and total 84 marks. 2. Candidates may attempt any 5 questions maximum of 60 marks. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 			
Q.1(a)	Consider a DMS with source probabilities $\{0.30, 0.25, 0.20, 0.15, 0.10\}$. Find the $H(X)$.	e source entropy, [2	2]
Q.1(b)	Prove that the entropy for a discrete source is a maximum when the output symbols are equally		4]
Q.1(c)	probable. Define mutual information and prove the following equation for chain rule for mutual information $I(X_1, X_2,, X_n; Y) = \sum I(X_i; Y X_{i-1}, X_{i-2},, X_1);$ where i=1 to n.		5]
Q.2(a) Q.2(b)			2] 4]
Q.2(c)			5]
Q.3(a) Q.3(b) Q.3(c)	Define Binary Erasure Channel. Find the overall channel capacity of three cascaded BSC channels with transition 0.2 and 0.3 respectively. Discuss the channel capacity for MIMO system.	[2 probabilities 0.0, [4 [6	4]
Q.4(a) Q.4(b) Q.4(c)	Explain Hamming code. Provide the basic conditions for a perfect code and a maximum distance separab the polynomials $f(x)=2+x+x^2+2x^4$ and $g(x)=1+2x^2+2x^4+x^5$ over GF(3). Then deter What is the order of Galois extension field GF(2 ⁴)? In the same field compute α^{12} their field elements. Prepare table for multiplicative inverse and additive inver irreducible polynomial $x^2 + x + 1$.	mine f(x) + g(x). ⁷ × α ¹⁵ in terms of [6	4]
Q.5(a) Q.5(b) Q.5(c)	Briefly explain BCH code. For nonsystematic coding in (7, 3) cyclic code (under GF (2)) with generator polynomial $g(x) = (1+x)(x^3+x+1)$ Generate all possible codewords and determine parity check matrix, H. For (7, 3) code the generator polynomial of a systematic coding is given as: $g(x)=x^4+x^3+x^2+1$. Let the message vector is, m = (1, 0, 1) then determine the code vector. Also design the corresponding encoder.		2] 4] 5]
Q.6(a) Q.6(b) Q.6(c)	Define constraint length of a convolutional encoder. Describe Viterbi decoding of convolutional codes with its advantages. For the rational systematic encoder with matrix transfer function $G(x) = \begin{bmatrix} 1 & 0 & \frac{1+x}{1+x^3} \\ 0 & 1 & \frac{x^2}{1+x^3} \end{bmatrix}$	[2 [4 [6	1]

Determine the code rate and draw the systematic convolutional encoder along with its state diagram.

Q.7(a) Elaborate Caesar cipher with an example.

[2] Q.7(b) What is the difference between a message authentication code (MAC) and one-way hash function. [4] Q.7(c) Explain public key cryptography with a suitable example. [6]