BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	MCA I: MCA	SEMESTER : V SESSION : MO/18						
TIME:	SUBJECT: MCA5005 OPTIMIZATION THEORY IME: 3 HRS. FULL MARKS							
INSTRU 1. The 2. Cand 3. The 4. Befo 5. Table	CTIONS: question paper contains 7 questions each of 12 marks and total 84 marks. lidates may attempt any 5 questions maximum of 60 marks. missing data, if any, may be assumed suitably. re attempting the question paper, be sure that you have got the correct questior es/Data hand book/Graph paper etc. to be supplied to the candidates in the exam	n paper. nination hall.						
Q.1(a) Q.1(b)	Describe the phases of Operation Research. Consider the example of a manufacturer of animal feed who is producing feed mix for In our simple example the feed mix contains two active ingredients and a filler to One kg of feed mix must contain a minimum quantity of each of four nutrients as b Nutrient A B C D gram 90 50 20 2 The ingredients have the following nutrient values and cost A B C D Cost/kg Ingredient 1 (gram/kg) 100 80 40 10 40 Ingredient 2 (gram/kg) 200 150 20 - 60 What should be the amounts of active ingredients and filler in one kg of feed mix?	[6] or dairy cattle. [6] provide bulk. elow:						
Q.2(a)	Differentiate in following: (i) infeasible and unbounded (show graphically) (ii) Constraints and basic variables	[2+2+2+]						
Q.2(b)	 (iii) Optimal and feasible solution For an optimization problem following facts are given Hot dog mixture in 1000-pound batches. Two ingredients, chicken (\$3/lb) and beef (\$5/lb). Recipe requirements: at least 500 pounds of "chicken" at least 200 pounds of "beef" Ratio of chicken to beef must be at least 2 to 1. Determine optimal mixture of ingredients that will minimize costs. Solve it 	[6] graphically.						
Q.3(a)	Solve following LPP using simplex method Max Z=x+1.2y s.t. 2x+y≤180 x+3y≤300	[6]						
Q.3(b)	Explain BIG-M method with example.	[6]						
Q.4(a)	Show that dual of given LPP has no variables is same as no of constraints in primal. Min Z_x =x1-3x2-2x3 s.t. 3x1-x2+2x3<=7 2x1-4x2>=12 -4x1+3x2+8x3=10 And x1.x2>=0. x3 is unrestricted	[4]						
Q.4(b)	Solve given LPP by dual simplex method Min $z = 2x1 + x2$ s.t. $3x1 + 2x2 \ge 3$ $2x1 + 3x2 \ge 6$ $3x + 2x2 \le 3$ $x i \ge 0$	[8]						

- Q.5(a) Differentiate between pure integer programming and mixed integer programming.
- Q.5(b) Solve given LPP by revised simplex method Max Z=2x+y
 - - 3x+4y≤6 s.t. 6x+y≤3
 - And x,y≥0

Q.6	Find minimum path using dynamic programming for given stage coach problem.												roblem.	[12]				
			В	С	D]		Ε	F	G			Н	I		J		
		Α	2	4	3		В	8	7	5		Е	9	3	Н	3		
																-		

[4] [8]

[6]

				U					J	
	В	8	7	5	Ε	9	3	Η	3	
	С	3	2	4	F	7	5	Ι	8	
	D	4	1	5	G	9	4			

- Q.7(a) What is Quadratic programming?
- Q.7(b) What is separable convex programming problem and how they are different then quadratic [6] programming?

::::03/12/2018:::::M