BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	MCA I: MCA	SEMESTER : III SESSION : MO/18	
TIME:	SUBJECT: MCA3007 AUTOMATA THEORY 03:00 HRS.	FULL MARKS: 60	
INSTRUC 1. The o 2. Cand 3. The o 4. Befor 5. Table	CTIONS: question paper contains 7 questions each of 12 marks and total 84 marks. idates may attempt any 5 questions maximum of 60 marks. nissing data, if any, may be assumed suitably. re attempting the question paper, be sure that you have got the correct quest es/Data hand book/Graph paper etc. to be supplied to the candidates in the ex	ion paper. amination hall.	
Q.1(a) Q.1(b)	Define Finite Automata mathematically, with its pictorial diagram and explain its Design a DFA that will recognize strings over $\Sigma = \{0,1\}$ that starts with 010 or 107	functionality in detail. and ends with 110.	[6] [6]
Q.2(a)	Prove following identity:		[6]
Q.2(b)	$\Phi R = R\Phi = \Phi$ Write Regular Expression for string ends with 10 over $\Sigma = \{0,1\}$, and from the corresponding DFA	written RE derive the	[6]
Q.3(a)	Write a Grammar that will generate assignment statement of C Programming la	nguage. Use '+' and '*'	[6]
Q.3(b)	operators only. What do you mean by Chomsky Normal Form of Grammar? Explain with suitable	example.	[6]
Q.4(a) Q.4(b)	Design a Grammar that will generate strings of form $a^n b^n c^n$, $n \ge 0$. To recognize strings of form mentioned in question 4.a, which abstract machin Explain it with its pictorial diagram.	e will be appropriate.	[6] [6]
Q.5(a)	What is the relation between a Pushdown automata and the abstract machine whi	ch you have mentioned	[6]
Q.5(b)	In answer of question 4.b? Justify. Design a Pushdown Automata that will recognize string that contains equal numl	per of 0's and 1's.	[6]
Q.6(a) Q.6(b)	Give mathematical definition of Turing Machine with proper block diagram. Design a Turing machine that will perform subtraction operation on unary numb	ers.	[6] [6]
Q.7(a) Q.7(b)	A Turing Machine will halt for a given input. Can we write algorithm to check it? Write short note of Recursive enumerable language.	Describe.	[6] [6]

******28.11.18*****M