BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS:	(END SEMESTER EXAMINATION) BE	SEMESTER : VII/A
BRANCH:		SESSION : MO/18
	SUBJECT: IT7043 COMPILER DESIGN	
TIME:	3 HOURS	FULL MARKS: 60
2. Candio 3. The m	TIONS: uestion paper contains 7 questions each of 12 marks and total 84 marks dates may attempt any 5 questions maximum of 60 marks. issing data, if any, may be assumed suitably. e attempting the question paper, be sure that you have got the correct	
	s/Data hand book/Graph paper etc. to be supplied to the candidates in	
	What is the first thing a compiler does when a source program is passed to	
Q.1(c)	Explain types of errors may detected by the compiler during compilation p Explain other supporting software required for the language processi compiler. Explain the flow of source program to target machine code.	
Q.2(a)	Identify lexical error if any in following code: i) Int b = " 25" ; ii) Int float = 'a ;	I
Q.2(c)	Design and specify regular expression to construct Lexical Analyser for Rea Verify the string id + id * id is member of the following grammar or not, b and consider the following parsing table for the same: $E \rightarrow T X$ $X \rightarrow + T X / \varepsilon$ $T \rightarrow F Y$ $Y \rightarrow * F Y / \varepsilon$	
	$\begin{array}{c c} F \rightarrow id \\ \hline & Id \\ + \\ \end{array} \begin{array}{c c} * \\ & \\ \end{array} $	
	$E \qquad E \to T X \qquad \qquad$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ε
	Compute FIRST set of all Non-Terminals for following Grammar: $S \rightarrow AB$ $B \rightarrow aAB / \epsilon$ $A \rightarrow XY$ $Y \rightarrow bXY / \epsilon$ $X \rightarrow d / nSm$	I
Q.3(b)	Compute FOLLOW set of all Non-Terminals for above Grammar:	l
Q.3(c)	Construct LL(1) parsing table for the following grammar: $S \rightarrow aABC$ $A \rightarrow a / bb$ $B \rightarrow a / \epsilon$ $C \rightarrow b / \epsilon$	
	Construct an equivalent grammar after removing left recursion: E $ ightarrow$ Ea / Eb / b / a	I
Q.4(b)	Explain shift-reduce and reduce-reduce conflicts in SLR(1) with an exampl Construct LALR(1) table and verify the following grammar is LALR(1) or no $S \rightarrow Aa$ $S \rightarrow bAc$ $S \rightarrow Bc$	

Q.5(a) Q.5(b)	Differentiate between Synthesized and Inherited attributes. Construct Syntax Directed Translation that would compute total number of one's present in binary string, where "count" is a attribute and "S.count" would give the total no 1's in the string (given). $S \rightarrow L$ $L \rightarrow LB$ $L \rightarrow B$ $B \rightarrow 0$ $B \rightarrow 1$	[2] [4]		
Q.5(c)	Construct operator precedence parsing table for the following grammar $A \rightarrow B * A / B$ $B \rightarrow B + C / C$ $C \rightarrow D @ C / D$ $D \rightarrow d$	[6]		
Q.6(a) Q.6(b)		[2] [4]		
Q.6(c)	<pre>Generate three address code for the following code: Switch(a+b) { Case 1: c = a + b ; break ; Case 2: { If((a>b) or (c<d))<="" td=""><td>[6]</td></d)></pre>	[6]		
Q.7(a) Q.7(b)	Explain concept of induction variable in optimization technique. Construct DAG for the following code: A = b * c D = x + y G = b * c H = D - A	[2] [4]		
Q.7(c)		[6]		
:::::05/12/2018:::::M				