BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	·	SEMESTER : VII/ADD SESSION : MO/18
TIME:	SUBJECT: IT7021-DATA MINING CONCEPTS AN 03:00 HRS.	D TECHNIQUES FULL MARKS: 60
1. The 2. Cano 3. The 4. Befo	JCTIONS: question paper contains 7 questions each of 12 marks and tota didates may attempt any 5 questions maximum of 60 marks. missing data, if any, may be assumed suitably. ore attempting the question paper, be sure that you have got t les/Data hand book/Graph paper etc. to be supplied to the can	he correct question paper.
Q.1(a) (b) (c)		of data mining is useful. [4]

- Q.2(a) State the 3-4-5 rule.
 - (b) Consider the dataset given below. If the weight is to be discretized into two values, which is a better [4] split point between split point A and split point B. (Point A is between the 3rd and 4th tuple, point B is between 5th and 6th tuple.)

Row #	Weight	Gender	
1	42	F	
2	45 56	F	
3	56	Μ	► A
4	58 63 69	F	
5	63	Μ	– D
6	69	F	▼ B
7	71	Μ	
8	80	Μ	
1	1		

- (c) Prove that $\frac{1}{N}\sum_{i=1}^{N}(x_i \bar{x})^2 = \frac{1}{N}\left[\sum x_i^2 \frac{1}{N}(\sum x_i)^2\right]$. What advantage does the right-hand side method of [6] computing the variance provide over the left hand side?.
- Q.3(a) Explain the slice and dice operations with reference to a multidimensional data cube. [2]
 - (b) How is a ROLAP data mining engine different from a MOLAP data mining engine in terms of storage [4] and access. If you need to store a lot of materialized cubes which one would you prefer?
 - (c) With reference to a data warehousing system what is a lattice of cuboids. How does the existence of [6] concept hierarchies in a dimension affect the size of the lattice?
- Q.4(a) How is classification different from prediction?
 - (b) Why is accuracy not always the best method of measuring the effectiveness of a classifier. What other [4] parameters could be used instead of accuracy? [6]
 - (c) Explain what you understand by tree pruning.

Q.5(a) What is a "closed frequent itemset" and why is it useful? [2] (b) Consider the transactions shown in the table below. List the frequent itemsets present in the data [4] using the FP Tree algorithm. You can assume support is 30%.

Transaction	# Items				
1	Apple, Juice, Ball, Chicken				
2	2 Apple, Juice, Ball				
3	Apple, Juice				
4	Apple, Pear				
5	Milk, Juice, Ball, Chicken				
6	Milk, Juice, Ball				
7	Milk, Juice				
8	Milk, Pear				

(c) What are null transactions? Suggest at least two different methods used in Association rule mining to [6] mitigate the effects of null transactions.

[2]

[2]

Q.6(a) Prove that if f(x) is the activation function f(x)=1/[1-exp(-x)], then df(x)/dx = f(x)[1-f(x)]

(b) How is bootstrapping different from random sampling? What proportion of tuples are likely to make it [4] to the train set in bootstrap .632 algorithm. Explain.

[2]

(c) Consider the table given below. What is the drop in the Information Gain value for the dataset when [6] considering only the attribute "age" compared to the original data set. $[log_{10}2 = 0.30]$

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
0	senior	medium	yes	fair	yes
1	youth	medium	yes	excellent	yes
2	middle_aged	medium	no	excellent	yes
3	middle_aged	high	yes	fair	yes
4	senior	medium	no	excellent	no

Q.7(a) Justify that the running time of the K-Means algorithm is O(n), where n is the number of instances. [2]
(b) The distance between 6 data points is given below. If the initial medoiods are chosen as points "C" [4] and "F", what is the final set of clusters obtained after completing a single iteration of PAM.

	Α	В	С	D	Ε	F
Α	0	2	3	1	4	3
A B		0	4	3	2	4
С			0	2	4	3
D				0	2	1
E					0	3
F						0

(c) Explain the working of ROCK. Assume that two clusters exist made up of the following transactions: [6] Cluster 1 = {{a,b,c}, {a,b,d}, {a,b,e}, {a,c,d}, {a,c,e}, {a,d,e}, {b,c,d}, {b,c,e}, {b,d,e}, {c,d,e}}. [6] Cluster 2 = {{a,b,f}, {a,b,g}, {a,f,g}, {b,f,g}}. If we use a value of Θ = 0.5, then what is the distance (in terms of links) of {a,b,f} from the transactions {a,b,g} and {a,b,c}?

******28.11.18******M