BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI
 (END SEMESTER EXAMINATION)

CLASS:	BE
BRANCH:	IT

SEMESTER : VII/ADD
BRANCH: IT

SUBJECT: IT7021-DATA MINING CONCEPTS AND TECHNIQUES
TIME: 03:00 HRS.
FULL MARKS: 60

INSTRUCTIONS:

1. The question paper contains 7 questions each of 12 marks and total 84 marks.
2. Candidates may attempt any 5 questions maximum of 60 marks.
3. The missing data, if any, may be assumed suitably.
4. Before attempting the question paper, be sure that you have got the correct question paper.
5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.
Q. 1 (a) With reference to a data mining engine, what do you understand by coupling?
(b) What is evolution analysis. Give some examples where this kind of data mining is useful.
(c) Explain the architecture of a typical data mining system in terms of data mining primitives.
Q.2(a) State the 3-4-5 rule.
(b) Consider the dataset given below. If the weight is to be discretized into two values, which is a better split point between split point A and split point B. (Point A is between the $3^{\text {rd }}$ and $4^{\text {th }}$ tuple, point B is between $5^{\text {th }}$ and $6^{\text {th }}$ tuple.)

Row \#	Weight	Gender
1	42	F
2	45	F
3	56	M
4	58	F
5	63	M
6	69	F
7	71	M
8	80	M

(c) Prove that $\frac{1}{N} \sum_{i=1}^{\mathrm{N}}\left(x_{i}-\bar{x}\right)^{2}=\frac{1}{N}\left[\sum x_{i}^{2}-\frac{1}{N}\left(\sum x_{i}\right)^{2}\right]$. What advantage does the right-hand side method of computing the variance provide over the left hand side?.
Q.3(a) Explain the slice and dice operations with reference to a multidimensional data cube.
(b) How is a ROLAP data mining engine different from a MOLAP data mining engine in terms of storage and access. If you need to store a lot of materialized cubes which one would you prefer?
(c) With reference to a data warehousing system what is a lattice of cuboids. How does the existence of concept hierarchies in a dimension affect the size of the lattice?
Q.4(a) How is classification different from prediction?
(b) Why is accuracy not always the best method of measuring the effectiveness of a classifier. What other parameters could be used instead of accuracy?
(c) Explain what you understand by tree pruning.
Q.5(a) What is a "closed frequent itemset" and why is it useful?
(b) Consider the transactions shown in the table below. List the frequent itemsets present in the data using the FP Tree algorithm. You can assume support is 30%.

Transaction \#	Items
1	Apple, Juice, Ball, Chicken
2	Apple, Juice, Ball
3	Apple, Juice
4	Apple, Pear
5	Milk, Juice, Ball, Chicken
6	Milk, Juice, Ball
7	Milk, Juice
8	Milk, Pear

(c) What are null transactions? Suggest at least two different methods used in Association rule mining to mitigate the effects of null transactions.
Q.6(a) Prove that if $f(x)$ is the activation function $f(x)=1 /[1-\exp (-x)]$, then $d f(x) / d x=f(x)[1-f(x)]$
(b) How is bootstrapping different from random sampling? What proportion of tuples are likely to make it to the train set in bootstrap . 632 algorithm. Explain.
(c) Consider the table given below. What is the drop in the Information Gain value for the dataset when considering only the attribute "age" compared to the original data set. $\left[\log _{10} 2=0.30\right]$

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Q.7(a) Justify that the running time of the K-Means algorithm is $O(n)$, where n is the number of instances.
(b) The distance between 6 data points is given below. If the initial medoiods are chosen as points "C" [4] and "F", what is the final set of clusters obtained after completing a single iteration of PAM.

	A	B	C	D	E	F
A	0	2	3	1	4	3
B		0	4	3	2	4
C			0	2	4	3
D				0	2	1
E					0	3
F						0

(c) Explain the working of ROCK. Assume that two clusters exist made up of the following transactions:

Cluster $1=\{\{a, b, c\},\{a, b, d\},\{a, b, e\},\{a, c, d\},\{a, c, e\},\{a, d, e\},\{b, c, d\},\{b, c, e\},\{b, d, e\},\{c, d, e\}\}$.
Cluster $2=\{\{a, b, f\},\{a, b, g\},\{a, f, g\},\{b, f, g\}\}$. If we use a value of $\Theta=0.5$, then what is the distance (in terms of links) of $\{a, b, f\}$ from the transactions $\{a, b, g\}$ and $\{a, b, c\}$?

