BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CI ACC.	DE	(LIND SEMESTER EXAMINATION)	SEMESTED . V	
BRANCH	I: IT		SESSION : MO/18	
TIME:	3 HOURS	SUBJECT: IT5027 DESIGN OF COMPUTER ALGORITHM	FULL MARKS: 60	
INSTRUC 1. The c 2. Candi 3. The r 4. Befor 5. Table	CTIONS: question paper cor idates may attemp nissing data, if any re attempting the es/Data hand book	ntains 7 questions each of 12 marks and total 84 marks. ot any 5 questions maximum of 60 marks. y, may be assumed suitably. question paper, be sure that you have got the correct que /Graph paper etc. to be supplied to the candidates in the v	stion paper. examination hall.	
Q.1(a) Q.1(b) Q.1(c)	Prove that 2 ⁿ⁺¹ + 5r What is double lin Explain the mathe	n is O(2 ⁿ). k list? Write the difference between double link list and sing matical analysis steps of non-recursive algorithms with an ex	ly link list. kample.	[2] [4] [6]
Q.2(a) Q.2(b) Q.2(c)	Write the pseudo What is stability ir What is a decrease	code of merge sort algorithm. n sorting algorithms? Explain with an example. e & conquer algorithm? Explain with an example and show all t	he intermediate states.	[2] [4] [6]
Q.3(a) Q.3(b) Q.3(c)	Write a transform What is a decrease What is strassens i	& conquer method to evaluate a polynomial equation. e by a constant algorithm? Explain with an example. matrices multiplication? Explain the algorithm and show how	it is better.	[2] [4] [6]
Q.4(a) Q.4(b)	Write a pseudo co A data file of 1,00 in table. using var	de for Dijkstra algorithm.),000 characters contains only the characters a-f with the fi iable length code calculate number of bits to encode the file	equencies as indicated	[2] [4]

a	b	с	d	е	f
45	13	12	16	9	5

Q.4(c) Write the pseudo code of krushkal algorithm. Find the Minimal cost Spanning tree for the given graph. [6]

Q.5(a) What is dynamic programming approach? Write it's advantages and limitations.Q.5(b) Find the shortest paths between all pairs of vertices for the given graph

[2] [4]

Q.5(c)	What is optimal binary	search tree? Contrac	t the	e optii	mal tr	ee fro	m the given dat	ta.	[6]
	keys	15		25			35	45	
	Frequencies	4		2			6	3	
Q.6(a) Q.6(b) Q.6(c)	What is backtracking? What is branch and bou What is traveling salesr	Write its advantages und approach? Briefly man problem? Solve t	and l / exp the p 20	imita lain w roblei 30	tions. vith ex n for 10	kample the giv	e. ven cost adjace	ency matrix.	[2] [4] [6]
		15	80	16	4	2			
		3	C	00	2	4			
		19	6	18	00	3			
		_16	4	7	16	8			

Q.7(a)What is the difference between NP and NP complete problem?[2]Q.7(b)Vertex Cover problem is belongs to which class of problem? Explain how it's belongs to it.[4]Q.7(c)Discuss some approximation algorithm for NP hard problems[6]
--

:::::03/12/2018:::::E