BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	(END SEMESTER EXAMINATION) BE I: IT SUBJECT: IT3021-DISCRETE MATHEMATICS AND GRAPH THEORY	SEMESTER : III SESSION : MO/18	
TIME:	03:00	FULL MARKS: 60	
INSTRU(1. The c 2. Cand 3. The r 4. Befor 5. Table	CTIONS: question paper contains 7 questions each of 12 marks and total 84 marks. idates may attempt any 5 questions maximum of 60 marks. nissing data, if any, may be assumed suitably. re attempting the question paper, be sure that you have got the correct questions. sy/Data hand book/Graph paper etc. to be supplied to the candidates in the examinations.	n paper. mination hall.	
Q.1(a)	Let p: Babu is rich, q: Babu is happy. Give a simple verbal sentence which describes each of the following proposition: (i) $p \lor \sim q$ (ii) $\sim p \rightarrow q$ (iii) $\sim \sim p$ (iv) $(\sim p \land q) \rightarrow p$		[4]
(b)	Investigate the following compound proposition for a truth table as a tautology: $(p \wedge q) \vee (p \wedge r)$		[8]
Q.2(a)	Using principle of mathematical induction, show that $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} > \sqrt{n} , \text{ for } n \ge 2 .$		[6]
(b)	Let $N = n^2 + n + 41$. Show that there are some values of <i>n</i> for which <i>N</i> is a others for which it is not. It follows that there is no inductive step which would sho is a prime number for all possible <i>n</i> .	prime number, and ow that $n^2 + n + 41$	[6]
Q.3(a)	Find the generating function of the Fibonacci sequence $\{a_n\}$ defined by		[6]

$$a_n = a_{n-1} + a_{n-2}$$
; $a_0 = 0$, $a_1 = 1$.

- (b) Solve the recurrence relation $a_r = 4a_{r-1} 4a_{r-2} + 4^r$, $r \ge 2$ using the generating function method, [6] under the initial conditions $a_0 = 2$ and $a_1 = 8$.
- Q.4(a) Prove that the maximum number of edges in a simple disconnected graph G with n vertices and k [8] components is $\frac{(n-k)(n-k+1)}{2}$.
 - (b) Let G be a simple graph with 12 edges. If G has 6 vertices of degree 3 and the rest of the vertices [4] have degree less than 3. Determine the (i) minimum number of vertices and (ii) maximum number of vertices.
- Q.5(a) Define Euler and Hamiltonian graphs with vivid description citing its construction. [8]
 (b) In a graph, prove that an Euler path can also be a Hamiltonian path in some cases. Investigate it. If [4] true, give an example of such case.
- Q.6(a) Show that the two graphs as shown in the following figure are isomorphic. [8]

- (b) For each of the following degree sequences, determine if there exists a graph. Draw the graph. [4] (i) (5, 5, 4, 3, 2, 1) (ii) (5, 4, 3, 2, 1, 1)
- Q.7 Write short notes of the following: (i) Labelled Trees (ii) Tree Searching (iii) Spanning Trees

******26.11.18*****E

[12]

[0]