BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

CLASS: IMSC BRANCH: FOOD TECHNOLOGY SEMESTER: V SESSION : MO/2018

SUBJECT : IMF5009 FOOD ENGINEERING II -HEAT AND MASS TRANSFER

TIME: 1.5 HOURS

FULL MARKS: 25

INSTRUCTIONS:

- 1. The total marks of the questions are 30.
- 2. Candidates may attempt for all 30 marks.
- 3. In those cases where the marks obtained exceed 25 marks, the excess will be ignored.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. The missing data, if any, may be assumed suitably.

- Q1 (a) Distinguish between overall and individual mass Transfer coefficient. Derive a relationship [2] between them.
 - (b) A 0.3175 cm sphere of glucose is placed in a water stream flowing at a rate of 0.15 m/s. [3] The temperature of water is 25C. The diffusivity of glucose in water is 0.69 x 10⁻⁵ cm²/s. Determine the mass transfer of coefficient. [Density of water L 997.1 kg/m³, Viscosity = 880.637x 10⁻⁶ Pa s]
- Q2 (a) Define and mention significance of Biot Number and Fourier Number in mass transfer
 - (b) Salt is being used to preserve a 5.0mm slice of meat. The concentration of salt at the [3] surface is 0.533 kg/kg salt free meat (SFM), and the initial concentration is 0.012 kg/kg SFM. If the mass diffusivity, *D*, of salt in meat is 8.00x $10^{-11} m^2/s$, determine the time required for the mass average concentration to reach 0.3 kg/kg SFM. X coordinate= $\frac{c_{mus} c_m}{c_{mus} c_m}$

[2]

- Q3 (a) State Roults law and define relative volatility.
 - (b) What is Flash distillation? What are its application in food processing? A liquid mixture containing 15% (weight), ethanol, is heated and flashed at 1 atm pressure. Determine (a) temperature of flash chamber (b) composition of two outlet stream when 50% is vapourized ______

Mass Fraction	n Enthalpy	Enthalpy, kJ/kg mixture				
Ehanol	Liquid	Vapour				
0	418.9	2675				
.1	371.7	2517				
.3	314.0	2193				
.5	285.9	1870				
.7	258.4	1544				
.9	224.7	1223				
1.0	207.0	1064				

Temp ^o C	100	95.2	87.3	83.2	81.0	79.1	78.2	78.1	78.2	78.3
XA	0	0.50	0.200	0.400	0.600	0.800	0.940	0.960	0.980	1.0
УA	0	0.377	0.656	0.746	0.794	0.858	0.942	0.959	0.978	1.0

- Q4 (a) What is Ostwald ripening? State Kelvin's equation.
 - (b) Calculate crystal yield when a 100 kg hot saturated sucrose solution at 90°C is cooled to 30°C.

Temperature ℃	0	10	20	30	40	60	80	100
Sucrose, g/100 g water	179	190	204	219	238	287	362	487

- Q5 (a) Define Fourier Law of heat conduction and find the expression for thermal resistance.
 - (b) A rod of 5 cm diameter and 30 cm length is maintained at 200 °C hot end and colder end [3] is at 10 °C. These temperature conditions are attained when there is a heat flow 10 watts. If the cylindrical surface of the rod is completely insulated, determine the thermal conductivity of the rod material.
- Q6 (a) An exterior wall of a house may be approximated by 10 cm layer of common brick (k = [2] 0.75 W/m-K) followed by 4 cm layer of gypsum plaster (k= 0.5 W/m-K). What thickness of loosely packed rock wool insulation (k= 0.065 W/m-K) should be added to reduce the heat loss or gain through the wall by 75%.
 - (b) Find an expression for critical thickness of insulation for cylindrical surface.

:::::: 14/09/2018 :::::E

[2] [3]

[2] [3]

[2] [2]

[3]