BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

(END SEMESTER EXAMINATION)			
CLASS: BRANCH	IMC I: CHEMISTRY	SEMESTER : V SESSION : MO/18	
TIME:	SUBJECT: IMC5009 INORGANIC CHEMISTRY II 3 HOURS	FULL MARKS: 60	
 INSTRUCTIONS: 1. The question paper contains 7 questions each of 12 marks and total 84 marks. 2. Candidates may attempt any 5 questions maximum of 60 marks. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 			
	Which one of the following coordination compounds would you expect to be parar i) $Zn(NH_3)_4]Cl_2$		[2]
Q.1(b)	ii) K[FeCl ₄] (low spin, tetrahedral) For each of the following, sketch the d-orbital energy levels and the distribution of d electrons [4 among them, state the geometry, list the number of d-electrons, list the number of lone electrons, and label whether they are paramagnetic or diamagnetic: i. $[Ti(H_2O)_6]^{2^+}$ ii. $[NiCl_4]^{2^-}$		[4]
Q.1(c)	Discuss different types of Structural isomers in Coordination chemistry.		[6]
Q.2(a)	Palladium(II) tends to form complexes with coordination number 4. A compound ha $PdCl_2 \cdot 3NH_3$. (a) Write the formula for this compound that best shows structure. (b) When an aqueous solution of the compound is treated with excess many moles of $AgCl(s)$ are formed per mole of $PdCl_2 \cdot 3NH_3$?	the coordination	[2]
Q.2(b)	For the complex ion $[Fe(Cl)_6]^3$ determine the number of d electrons for Fe, ske energy levels and the distribution of d electrons among them, list the number of and label whether the complex is paramagnetic or diamagnetic.		[4]
Q.2(c)	The octahedral complex $[Ti(H_2O)_6]^{3+}$ has a single <i>d</i> electron. To excite this electron state t_{2g} orbital to the e_g orbital, this complex absorbs light from 450 to 600 nr absorbance corresponds to Δ_{oct} and occurs at 499 nm. Calculate the value of Δ_{oct} predict what color the solution will appear.	n. The maximum	[6]
Q.3(a) Q.3(b) Q.3(c)	Explain why tetrahedral low spin complexes are rare? Explain why $MgAl_2O_4$ is a normal spinel structure while $NiFe_2O_4$ is an inverted spine Consider Ti^{3+} and Cr^{3+} in an octahedral environment, of the two, which one is in degenerate state , and explain what types of distortion may occurs in non line exist in electronically degenerate state.	el structure. an electronically	[2] [4] [6]
Q.4(a) Q.4(b)	Give the range of UV-vis and IR spectroscopy. If the transition is between one set of d-orbital to another set of d-orbital, only or there for a complex. However, different colors are seen for different complexes.	ne color should be	[2] [4]
Q.4(c)		·	[6]
Q.5(a) Q.5(b) Q.5(c)	Why borazines are called inorganic benzene? Draw the structure of B_5H_9 , B_4H_{10} , P_4S_{10} , P_4S_7 Discuss Wades rule with examples.		[2] [4] [6]
Q.6(a) Q.6(b)	Discuss the Structure and application of diborane. $[C_2B_9H_{11}]^{2^-}$ anion could be considered isoelectronic with C_5H_5 Justify. Draw $[C_2B_9H_{11}]^{2^-}$ anion	the structure of	[2] [4]
Q.6(c)	Discuss the following (i) cyclosilicates (ii) phyllosilicates (iii) tectosilicates		[6]
Q.7(a)	The exchange in the $Fe(H_2O)_6]^{3+}$ and $Fe(H_2O)_6]^{2+}$ is very much slower than in $Fe(CN)$ system. Explain.	$[_{6}]^{3-}$ and Fe(CN) $_{6}]^{4-}$	[3]
Q.7(b) Q.7(c)	What is trans effect? Discuss trans effect by polarization theory. Explain outer sphere mechanism.		[5] [4]