BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

-	ASS: ANC		SEMESTER: VII SESSION : MO/2	
SUBJECT : EE8225 APPLIED CONTROL THEROY				
TIA	۸E:	1.5 HOURS	FULL MARKS: 2	25
 INSTRUCTIONS: 1. The total marks of the questions are 30. 2. Candidates may attempt for all 30 marks. 3. In those cases where the marks obtained exceed 25 marks, the excess will be ignored. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. The missing data, if any, may be assumed suitably. 				
Q1		Define the following in term of state space model i. State ii. State vector iii. State space iv. State trajectory		[2]
	(b)	Construct the state model for a system characteristic by the different $D^3y/dt^3 + 4 d^2y/dt^2 + 3 dy/dt + 2y = u$.	tial equation	[3]
Q2	(a) (b)	What is the characteristic equation of a system in state-space model? For the given transfer function $G(s) = \frac{(\sigma + D)}{s^3 + 9s^2 + 24s + 2D}$. Obtain the Jorden ca model.	nonical state	[2] [3]
Q3		What is the Eigen value and Eigen vector? How we determine the Eigen Vector when all Eigen values are Distinct?		[2] [3]
Q4		"State space model is not an unique solution". Explain the statement. The state variable description is $\begin{bmatrix} \mathbf{x} \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 2 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} \mathbf{u}$ Determine state transition matrix of the system assuming all initial condition	is zero	[2] [3]
Q5	(a)	Investigate the following system for controllability and observability		[2]
		$\dot{x} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$ $y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$		
	(b)	Consider a second order system described as $\dot{x} = \begin{bmatrix} -1 & 3 \\ 0 & -2 \end{bmatrix} x + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u$ $y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$ Required to place a close loop pole at (-3,-3). Find the required state for matrix.	eedback gain	[3]
Q6	(a)	What is the concepts of state model observer designed? what are the adv pole placement designed?	antages over	[2]
	(b)	For the system given below, an observer is to be designed to estimate the sta	ate variables.	[3]

(b) For the system given below, an observer is to be designed to estimate the state variables. [3] Select the observer gain and write the equations describing the observer dynamics.

$$\dot{x} = \begin{bmatrix} -4 & -4 \\ 1 & -2 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$