BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

[2] [4]

[2]

[4]

[6]

[6]

CLASS: BRANCH:	BE EEE	SEMESTER : VII SESSION : MO/18		
TIME.	SUBJECT: EE8225 APPLIED CONTROL THEORY			
TIME:	3 HRS.	FULL MARKS: 60		
 INSTRUCTIONS: 1. The question paper contains 7 questions each of 12 marks and total 84 marks. 2. Candidates may attempt any 5 questions maximum of 60 marks. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 				
Q.1(a) Explain the concept and significance of system 'state'.Q.1(b) A system is represented by the its state model as				
	$\dot{x} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$			

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

Find unforced response of the system.

Q.1(c) Determine the state model of the system using phase variables [6]

$$G(s) = \frac{s+2}{s^3 + 3s^2 + 2s + 10}$$

- Q.2(a) Explain the concept of asymptotic stability and BIBO stability.
- Q.2(b) Define diagonalization and discuss its utility.
- Q.2(c) Check the controllability of a system describe as

$$[\dot{x}] = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 0.5 & -2 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$

- Q.3(a) Explain the Basic concept and methodology of state feedback for pole placement. [2] [4]
- Q.3(b) The state model of the system is given as :-

$$\dot{x} = \begin{bmatrix} -1 & 3\\ 0 & -2 \end{bmatrix} x + \begin{bmatrix} 1\\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

Design state feedback controller for the given system such that the close loop poles are placed at s=-5 and s=-6

Q.3(c) The state model of second order system is given as $\dot{x_1} = -2x_1 + x_2$

 $\dot{x_2} = -x_2 + u$

 $V = X_1 + X_2$ suppose u is given as

$$u = -k_1 x_1 - k_2 x_2$$

where k_1 and k_2 are state feedback coefficients. Show that the system remains completely controllable for any arbitrary values of k_1 and k_2 .

Q.4(a) With the help of suitable example distinguish between incidental and intentional non-linearity.

Q.4(b) Define describing function and explain its significance in the analysis of nonlinear system.

Q.4(c) The system matrix A is given as

$$A = \begin{bmatrix} -1 & 4\\ -2 & 5 \end{bmatrix}$$

Draw the phase portrait

[2]

[4]

[6]

Q.5(a)	What is optimal control?	[2]
Q.5(b)	Describe the roll of performance measure in optimal control.	[4]
Q.5(c)	Explain the use of Lagrangian and Hamiltonian function for obtaining alternate state models.	[6]
Q.6(a)	Define the term adoptive control.	[2]
Q.6(b)	Discuss the significance of identification function in adoptive control system.	[4]
Q.6(c)	Explain the working of Model Reference Adoptive Control System.	[6]
Q.7(a)	Explain the stability in sense of Liapunov.	[2]
Q.7(b)	Define the local stability and global stability of the system and its significance.	[4]
Q.7(c)	Find the Describing function of a relay with a dead zone.	[6]

:::::03/12/2018:::::M