SUBJECT: EE8217 - EHV POWER TRANSMISSION
TIME: $\quad 3$ HOURS
FULL MARKS: 60

INSTRUCTIONS:

1. The question paper contains 7 questions each of 12 marks and total 84 marks.
2. Candidates may attempt any 5 questions maximum of 60 marks.
3. The missing data, if any, may be assumed suitably.
4. Before attempting the question paper, be sure that you have got the correct question paper.
5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.
Q.1(a) Explain about the factors affecting the power handling capacity of a EHV lines. Mention different levels of transmission voltages that are used in the world.
Q.1(b) Explain the term 'Sequence Inductance and Capacitance'. Evaluate the zero, positive and negative sequence inductances $\&$ capacitances for a fully transposed 3-phase ac line.
Q.1(c) Consider a matrix [A] given below:

$$
[\mathrm{A}]=\left(\begin{array}{ccc}
4 & 1 & -2 \\
1 & 0 & 2 \\
1 & -1 & 3
\end{array}\right)
$$

Calculate the (1) Eigen values of matrix [A] (2) Model Matrix [M], Where M is the Eigen vectors of matrix [A]. \& (3) Diagonalize the matrix [A].
Q.2(a) A Charge of $20 \mu \mathrm{C}$ is placed at a distance of 4 meters from the centre of a sphere of radius 1 metre (2-metre diameter sphere). Calculate the magnitude, polarity, and location of a point charge Q_{2} which will make the sphere at zero potential.
Q.2(b) Derive Markt-Mengele formulae for the outer phases and for the centre phases in case of 3phase ac line with horizontal configuration of phase.
Q.2(c) Explain about Surface Voltage gradient and its effects on conductors. Discuss about Gradient factor and their use.
Q.3(a) For the 1000 KV transmission lines $\mathrm{L}=500 \mathrm{Km}, \lambda=6000 \mathrm{Km}$., at 50 Hz . and, $\mathrm{Z}_{0}=260$ ohms. Assuming $|E s|=.\left|E_{R}\right|=1000 \mathrm{KV}$. Calculate the reactance and 3 Phase MVAR required at load end in the shunt compensating reactor. Neglect line resistance.
Q.3(b) In case of Transmission line with series capacitor compensation at line centre for voltage control, Prove that the generalized constants for the entire system is-

$$
\left(\begin{array}{ll}
A_{T} & B_{T} \\
C_{T} & D_{T}
\end{array}\right)=\left(\begin{array}{cc}
A+\left(\frac{X_{C}}{2 Z_{0}}\right) \sin \beta l & B-j X_{C} \cos ^{2}\left(\frac{\beta l}{2}\right) \\
C+j \frac{X_{C}}{Z_{0}{ }^{2}} \sin ^{2}\left(\frac{\beta l}{2}\right) & D+\left(\frac{X_{C}}{2 Z_{0}}\right) \sin \beta l
\end{array}\right)
$$

where X_{C} is reactance of capacitor and all remaining term have own standard meanings. Assume low loss condition of transmission line.
Q.3(c) Discuss about power frequency over-voltage control. Discuss the different types of static VAR compensators with its improvements obtained by the use of static VAR compensators (SVC).
Q.4(a) Highlights the difference between 12 pulses \& 6 pulses converters.
Q.4(b) Compare between the natural commutation and forced commutation in voltage source converters.
Q.4(c) Describe the working principle of 12 pulse converters with neat diagram, waveforms and output voltage equations.
Q.5(a) Explain about switching \& lightning overvoltage in case of EHV lines.
Q.5(b) A series L-R-C circuit has an $L=800 \mathrm{mH}, \mathrm{R}=24.8 \Omega$ and $\mathrm{C}=4 \mu \mathrm{~F}$. It is excited by an equivalent step voltage of magnitude $\mathrm{E}=420 /(2 / 3)=343 \mathrm{KV}$.Calculate (1) the attenuation factor (2) Natural frequency of oscillation ω_{0} and f_{0}.
Q.5(c) A single-phase overhead AC line has inductance $/ \mathrm{km}$ as 2 mH and a capacitance of 0.125×10^{-7} F / km. Estimate the surge impedance loading of the line when the system voltage is 400 KV . Also explain the terms with suitable figures, where necessary- (1) Line commutation (2) RRRV
Q.6(a) Draw the schematic diagram of HVDC converter station and mention its various components.
Q.6(b) Compare between HVDC transmission \& EHVAC mode of transmission.
Q.6(c) Discuss about types $\&$ rating of filter components used in HVDC line.
Q. 7 Write short technical notes on any three of the following-
(a) Neutral grounding.
(b) Reactive power requirements of the converters
(c) Bundled conductors
(d) Comparison between current source inverter (CSI) \& voltage source inverter (VSI)

