BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

(END SEMESTER EXAMINATION)			
CLASS: BRANCH	BE EEE	SEMESTER : V SESSION : MO/18	
TIME:	SUBJECT: EE5203 ELECTRICAL MACHINES-II 3.00 HOURS	FULL MARKS: 60	
2. Cand 3. The r 4. Befor	TIONS: uestion paper contains 7 questions each of 12 marks and total 84 marks. dates may attempt any 5 questions maximum of 60 marks. nissing data, if any, may be assumed suitably. e attempting the question paper, be sure that you have got the correct quest s/Data hand book/Graph paper etc. to be supplied to the candidates in the ex	amination hall.	
Q.1	The motor runs at 1000 r.p.m. The phase sequence is ABC. (a) Find pole pitch and slot angle.		[2]
	(b) Draw winding table for phase- A. (c) Find pitch factor (K_p ,)and distribution factor (K_d) of the winding.		[4] [6]
Q.2(a) Q.2(b) Q.2(c)	What is Excitation EMF and synchronous Impedance? Explain voltage regulation and ZPF method of voltage regulation in an alternator. A 100 kVA, 3000-Volts, 50-Hz, 3-phase star- connected alternator has effective armature resistance of 0.2 ohms. The filed current of 40 A produces short circuit current of 200 A and open circuit e.m.f of 1040 V (line). Calculate full load voltage regulation at 0.8 p.f lagging.		[2] [4] [6]
Q.3(a) Q.3(b) Q.3(c)	Define synchronizing power. Analyze the effect of change in excitation of a no-loaded grid connected alternator with the help of a phasor diagram. (Steam input kept constant). Two single phase alternators operated parallel have induced e.m.fs on open circuit of 230 <0° V and 230 <10° V and respective reactances of j2 ohms and j3 ohms. Calculate terminal voltage and currents by each of alternator's to a load impedance of 6 ohms (resistive).		[2] [4] [6]
Q.4(a) Q.4(b) Q.4(c)	Highlight applications of a synchronous motor power system. What is synchronous condenser? Explain the role of synchronous condenser in p.f improvement. A 75-kW, 3-phase start connected, 50-Hz, 440 Volts cylindrical rotor synchronous motor operates at rated condition with 0.8 p.f. leading. The motor efficiency excluding filed and stator losses is 95% and X_s =2.5 Ohms. Calculate mechanical power developed, armature current and back e.m.f developed.		[2] [4] [6]
Q.5(a) Q.5(b)	Elucidate Air Gap Power and Electromagnetic Torque. Draw the equivalent diagram of 3-phase induction motor correlate its para machines.		[2] [4]
Q.5(c)	The power input to a 500 V, 50-Hz, 6-pole, 3-phase induction motor running at 6 stator losses are 1 kW and the friction and the windage losses total are 2 kW. Calo loss and efficiency.		[6]
Q.6(a) Q.6(b) Q.6(c)	Why induction motor is called horse power of industry? Describe the best method of starting techniques of 3-phase induction motor. Describe the modern method of speed control techniques of 3-phase induction motor.		[2] [4] [6]
Q.7(a) Q.7(b) Q.7(c)	What is Double Revolving Field Theory? Describe a motor being used in ceiling fan with circuit phasor diagram and torq A 250-W, 200- V 50-Hz capacitor start induction motor has the following const auxiliary windings. $Z_m = 4.5 + j3.5$ Ohms, $Z_a = 9.5 + j3.5$ Ohms. Determine the valu that will place for the main and auxiliary winding currents are in quadrature at s	ants for the main and le of starting capacitor	[2] [4] [6]

:::::26/11/2018:::::E