BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

(END SEMESTER EXAMINATION)			
CLASS: BRANCH	M.TECH I: EEE	SEMESTER : I SESSION : MO/18	
TIME:	SUBJECT: EE503 MODERN CONTROL THEORY 3.00 HOURS	FULL MARKS: 50	
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 			
Q.1(a)	State the physical significance of eigenvalues. Find the eigenvalues and eigenvergiven by $A = \begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix}$	ctors of the matrix A	[5]
Q.1(b)	Develop equations and build the signal flow graph and solve for transfer function	$\frac{V_O(s)}{V_i(s)}$ using	[5]
	Mason's gain formula. $\begin{array}{c} & & R_1 & V_1(t) & R_2 \\ & & & & & \\ V_i(t) & & i_1 \\ & & & & & \\ \end{array}$		
Q.2(a)	Analyze Cayley- Hamilton method for A= $\begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$. Manipulate A^{-1}, A^2 .		[4]
Q.2(b)	The transfer function of a system is given as $\frac{Y(s)}{U(s)} = \frac{2s^2 + s + 5}{s^3 + 6s^2 + 11s + 4}$. Design s diagram in the canonical forms (i) CCF and (ii) OCF.	ate model and state	[6]
Q.3(a)	Illustrate linearization of nonlinear model. Defend its importance in control theo equation $z = x^2 + 4xy + 6y^2$ in the region defined by $8 \le x \le 10$ and $2 \le y$		[5]
Q.3(b)	Construct a Liapunov function and determine the type of stability for the $\begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$		[5]
Q.4(a)	Express controllability and observability. A control system is described by the $\frac{d^3y(t)}{dt^3} = u(t)$. Check the controllability and observability of the system.	differential equation	[5]
Q.4(b)	State principle of duality "Controllability of pair $\begin{bmatrix} A & B \end{bmatrix}$ implies the observabili Justify.	ty of pair $\begin{bmatrix} A^T & B^T \end{bmatrix}$.	[5]
Q.5(a)	Compare regulation with tracking. Construct the block diagram of system and full input and output are scalars.	order observer, when	[4]
Q.5(b)	Estimate a regulator system for the following plant, where $A = \begin{bmatrix} 0 & 1 \\ 20.6 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ state feedback control law $u = -kx$ design the state feedback gain matrix k if it closed loop poles at $s = -1.8 \pm j2.4$. Further design the observer gain matrix k_s if the both the observer poles at $s = -8$ by using observed state feedback control u	is desired to have the f it is desired to have	[6]

:::::30/11/2018:::::M