BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	MTECH/PRE-PHD : EEE	SEMESTER : I/NA SESSION : MO/18	
TIME:	SUBJECT: EE501 ADVANCED DIGITAL SIGNAL PROCESSING 03:00 HRS.	FULL MARKS: 50	
 INSTRUCTIONS: The question paper contains 5 questions each of 10 marks and total 50 marks. Attempt all questions. The missing data, if any, may be assumed suitably. Before attempting the question paper, be sure that you have got the correct question paper. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 			
Q.1(a)	Analyze whether the following discrete time system can be considered as LTI suitable mathematical proof.	system or not, with	[5]
Q.1(b)	Design for digital system using multi-rate DSP that utilizes both decimation and i Dual-tone multifrequency (DTMF) signalling at 770Hz and at 1477Hz.	nterpolation to have	[5]
Q.2(a) Q.2(b)	Derive DIT-FFT algorithm and draw the butterfly diagram. Compute the 2 - point DFT X (k) using DIT-FFT algorithm of a length 2 sequence x the steps of computation using butterfly diagram.	(n)= {1,2}. Represent	[5] [5]
Q.3(a)	Derive the order of IIR Butterworth Filter using bilinear transformations when pase band cut-off frequency Fp, stop band cut-off frequency Fs, stop band gain As and	s band gain Ap, pass Sampling frequency	[5]
Q.3(b)	Design a digital IIR Butterworth low pass filter using analog filter design techniq following constraints. Use bilinear transformations. Ap=0.89, Fp=25 Hz, As=0.215, frequency F_{samp} = 300 Hz.	ue that satisfies the Fs= 75 Hz, Sampling	[5]
Q.4(a) Q.4(b)	What is Gibb's oscillation? What are the remedial measures? Derive the condition for a FIR filter to be linear phase and check the condition for	- M=5.	[5] [5]

- Q.5(a) Design of real-time DSP adopts integrated design environment (IDE). Elucidate the implementation of [5] IDE in TMS 320 C 6X processor.
- Q.5(b) The TMS processor has CODEC. What is the basis for design of CODEC for converting analog to digital [5] signal and vice versa.

******28.11.18*****M