BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	BE I: ECE	SEMESTER : V SESSION : MO/18	
TIME:	SUBJECT: EE4207-DIGITAL SIGNAL PROCESSING 03:00 HRS.	FULL MARKS: 60	
INSTRU 1. The 2. Cand 3. The 4. Before 5. Table	CTIONS: question paper contains 7 questions each of 12 marks and total 84 marks. idates may attempt any 5 questions maximum of 60 marks. missing data, if any, may be assumed suitably. re attempting the question paper, be sure that you have got the correct questio es/Data hand book/Graph paper etc. to be supplied to the candidates in the exam	n paper. nination hall.	
Q.1(a) (b) (c)	Define causality and time invariance of a discrete time system. State whether the system $y(n) = x(n)\sin(w_0n)$ is time variant or invariant. Find the impulse response of the system whose frequency response is defined as $H(w) = e^{-jw}(3 - 2\cos w)$ $\binom{1}{2} n = 0 \le n \le 6$		[2] [4] [6]
	Compute the convolution y(n) of the signals $x(n) = \begin{cases} \frac{3}{2}n, & 0 \le n \le 0\\ 0, & elsewhere \end{cases}$ and $h(n) = \begin{cases} \frac{3}{2}n, & 0 \le n \le 0\\ 0, & elsewhere \end{cases}$	$\begin{cases} 1, -2 \le n \le 2 \\ 0, \text{ elsewhere} \end{cases}$	
Q.2(a)	(a) Define stability of a discrete time system. Check whether the system with impulse response $h(n = 3^{-n}u(n))$ is stable or unstable.		[2]
(b) (c)	Sketch the magnitude spectrum of the signal $x(n)=u(n)-u(n-4)$. Using partial fraction expansion, find the inverse Z-transform of the signal $X(z) = \frac{1-1/2z^{-1}}{1-1/4z^{-2}}$ ROC: $ z > 1/2$		[4] [6]
Q.3(a) (b)	Define the condition of causal and stable system in Z-domain. Find the 10-point inverse DFT of the sequence $X(k) = \begin{cases} 3, \ k = 0\\ 2, \ k = 2,7 \end{cases}$.		[2] [4]
(c)	Determine the discrete Fourier transform of the sequence $x(n) = \{1,2,3,4,4,3,2,1\}$ in time FFT method.	} using decimation	[6]
Q.4(a) (b) (c)	Explain why ideal filters are not realizable. Given a discrete time system $y(n)=0.5y(n-1)+0.8y(n-2)+x(n)+3x(n-2)$, draw it in direct Given a system function $H(z) = \frac{5Z^3+3Z^2+4Z+2}{z[2Z^2+3Z+1]}$, Realize it using ladder structure.	t form-II structure.	[2] [4] [6]
Q.5(a) (b) (c)	Find the lowest order of low pass Butterworth filter having maximally flat characteristic cutoff frequency at 1kHz and minimum attenuation of 40dB at 5 kHz. Explain the frequency transformation in Analog domain. The transfer function of the analog filter is given as $H(s) = \frac{s+0.1}{(s+0.1)^2+16}$. Find the the digital filter using bilinear transformation which resonates at $w = \pi/2$.	cteristics with 1 dB system function of	[2] [4] [6]
Q.6(a)	Explain symmetric and antisymmetric properties of linear phase filters and its	effect in FIR filter	[2]
(b)	Evaluate the system function of the digital filter using impulse invariance method at 5 Hz sampling frequency from the analog filter given as $H_{1}(s) = \frac{2}{1-s}$		[4]
(c)	Explain the bilinear transformation method of IIR filter design. Establish the relation frequency and digital frequency.	on between analog	[6]
Q.7(a)	Compare between the FIR and IIR filter.	$H_{1}(w) =$	[2]
(b)	$\begin{cases} 1, 0 \le w \le \frac{\pi}{6} \\ 0, \frac{\pi}{-} < w \le \pi \end{cases}$. Use the windowing method with a rectangular window.	(w) =	[4]
(c)	Explain the equiripple method of FIR filter design. Define the alternation theorem		[6]