BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS:	BE		SEMESTER : III
BRANCH:	EEE/ECE		SESSION : MO/18
		SUBJECT: EE3205-NETWORK THEORY	
TIME:	03:00 HRS.		FULL MARKS: 60
 INSTRUCTIONS: 1. The question paper contains 7 questions each of 12 marks and total 84 marks. 2. Candidates may attempt any 5 questions maximum of 60 marks. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 			

- Q.1(a) State substitution theorem.
 - State reciprocity theorem. (b)
 - State Tellegen's theorem. Mention the properties of Tellegen's theorem. Verify the theorem in (C) respect of the two networks having identical graphs for the following network.

- Q.2(a) Define tree and path. Show example.
 - State properties of the incidence matrix of a graph. Prove $AB_f^{T}=0$. (b)
 - [6] (c) For the following graph, consider the tree formed by branches (2,3,4). Construct incidence matrix, fundamental cut set matrix and tie set matrix.

- Q.3(a) What do you understand by a port of a network? Compare a 4-terminal network with a 2-port network. [2] [4]
 - (b) Design the ABCD parameters for the ladder network.

(c) Estimate the open-circuit and short-circuit impedances of the network shown in the figure, where $Z_a=2$ [6] ohm, $Z_b=6$ ohm, $Z_c=4$ ohm and $Z_d=8$ ohm.

[2]

[4]

[6]

[2]

[4]

- Q.4(a) Discuss the concept of poles and zeros in a network function.
 - (b) Calculate the range of B (beta)such that the polynomial $P(s) = s^4 + s^3 + 4s^2 + \beta s + 3$ is Hurwitz. [4]

[2]

[2]

[2]

(c) Realize the network in Foster-I form and Cauer-II form whose impedance function is given by [6]

$$Z(s) = \frac{8(s^2 + 1)(s^2 + 3)}{s(s^2 + 2)(s^2 + 4)}$$

- Q.5(a) Draw transformed representation in terms of impedance for inductor with initial current.
 - (b) Discuss the restrictions on pole and zero locations for driving point functions and transfer functions. [4]
 - (c) Compare the order of the LP filter under both Butterworth and Chebyshev approximations with the [6] following specifications:

 $\alpha_{p} \leq 3dB \quad \Omega \leq 1rad / \sec \alpha_{s} \geq 40dB \quad \Omega \geq 4.095rad / \sec \alpha_{s}$

- Q.6(a) What is the importance of frequency transformation in filter design?
 - (b) Discuss frequency transformation function required to transform a low pass prototype (symmetric [4] about zero frequency) to a high pass filter.
 - (c) Discuss the location of poles of transfer function of a low pass Butterworth filter assuming the pass- [6] band edge at 3dB point.
- Q.7(a)Differentiate active and passive elements.[2](b)Realize a second order low-pass filter with Butterworth approximation using op-amp.[4](c)Describe all pass filter, notch filter and gyrator.[6]

******28.11.18*****E