BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	BE H: MECH	SEMESTER : VII SESSION : MO/18
TIME:	SUBJECT: EE3201 INTRODUCTION TO SYSTEM THEORY 3 HRS.	, FULL MARKS: 60
INSTRU(1. The c 2. Cand 3. The r 4. Befor 5. Table	CTIONS: question paper contains 7 questions each of 12 marks and total 84 marks lidates may attempt any 5 questions maximum of 60 marks. missing data, if any, may be assumed suitably. re attempting the question paper, be sure that you have got the correct of es/Data hand book/Graph paper etc. to be supplied to the candidates in the	question paper. ne examination hall.
Q.1(a) Q.1(b)	Define and explain the following: (i) Causal system (ii) non causal System. Check whether the system is time variant or time invariant. y(n) = x(n + 1) - x(n - 1)	[2] [4]
Q.1(c)	Plot the following waveforms approximately to scale: (i) $e^{-2t}u(t)$ (ii) $e^{-2t}u(t-1)$ (iii) $e^{-2(t-1)}u(t)$ (iv) $e^{-2(t-1)}u(t-1)$	[6]
Q.2(a) Q.2(b) Q.2(c)	List the advantages of analogous systems. Derive the transfer function of the system shown in Fig. 1. Draw the electrical analog circuit of the system given in Fig. 2, using both Write the equilibrium equations of the system.	[2] [4] h F-V and F-I analogy. [6]
	* RILL F	511.

Q.3(a) Q.3(b)	Mention Dirichlet's conditions for a function to be Fourier transformable. Differentiate between Fourier series and Fourier transform. Mention the limitations of Fourier transform.	[2] [4]
Q.3(c)	Obtain the Fourier transform of the signal $x(t) = e^{- t }$ and sketch the magnitude and phase spectrum.	[6]
Q.4(a)	State and prove the final value theorem.	[2]
Q.4(b)	Solve the following differential equation using Laplace transform	[4]
	y + 4y + 3y = 3, y(0) = y(0) = 0	
Q.4(c)	Obtain the inverse Laplace transform of the function given by	[6]
	(i) $F(s) = \frac{(s+3)e^{-s/2}}{s^2+4s+9}$ (ii) $F(s) = \frac{s}{s^2+5s+4}$	
Q.5(a)	Draw the pole zero configuration of the system given by $T(s) = \frac{5(s+3)(s+5)}{c(s+2)(s+10)}$	[2]
0.5(b)	Differentiate between natural and forced response.	[4]
Q.5(c)	A rectangular voltage pulse of unit height and duration T is applied to a series R-C combination at t=0. Determine the voltage across the capacitance C as a function of time. Assume R=10k Ω and C=10 μ F.	[6]
Q.6(a)	Differentiate between absolute stability and relative stability of a system.	[2]

- Q.6(b) What is meant by BIBO stability? Explain and prove. Q.6(c) Examine the stability of the system whose characteristic function is given by $s^5 + 2s^4 + 2s^3 + 4s^2 + 4s + 8 = 0$ using R-H criteria. [4] [6]

Q.7(a)	Define (i) state (ii) state variables.	[2]
Q.7(b)	Determine the transfer function for the system whose state model is given by	[4]
	$\dot{X} = \begin{bmatrix} 0 & 1 \\ -3 & -2 \end{bmatrix} X + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u; y = \begin{bmatrix} 1 & 0 \end{bmatrix} X$	
	Comment on stability of the system.	
Q.7(c)	Obtain the three different forms of state model for the system given by $\ddot{y} + 3\ddot{y} + 2\dot{y} = \dot{u} + u$	[6]

:::::03/12/2018:::::M