BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

CLA BRA	ASS: ANCH	BTECH : CEP&P/BT/CHEM.ENGG/CIVIL/MECH/PROD	SEMESTER: I SESSION: MO/20	018
SUBJECT: EE101 BASICS OF ELECTRICAL ENGINEERING				
TIME:		2 HOURS	FULL MARKS: 25	
 INSTRUCTIONS: 1. The total marks of the questions are 25. 2. Candidates may attempt for all 25 marks. 3. Before attempting the question paper, be sure that you have got the correct question paper. 4. The missing data, if any, may be assumed suitably. 				
Q1. Q1.	(a) (b)	Define (i) active and passive elements (ii) linear and nonlinear elements Use Node voltage method to find the current through and voltage across for the circuit shown in Fig. 1.	ss each resistor	[2] [3]
Q2.	(a)	Explain with the aid of B-H curve the meaning of following terms:		[2]
Q2.	(b)	An iron ring has a mean length of 1.0m and a cross sectional area of 10cm^2 . It has a radial air gap of 2mm. a flux of 1.0 mWb is required in the air gap. The leakage factor is 1.2 and iron is such that when flux density is 1.2 Wb/m ² , the relative permeability is 400. Calculate the number of ampere turns required.		
Q3.	(a)	Draw the phasor diagram of the following voltages: $v_1 = 100 Sin 100t$		[2]
		$v_2 = 120 Sin(100t - \pi/3)$		
		$v_3 = 150 Sin (100t + \pi / 3)$		
		$v_4 = 200Cos100t$		
Q3.	(b)	A periodic waveform is shown in Fig. 2. Calculate the (i) frequency of wav equation for 0 <t<100 (iii)="" (iv)="" (v)="" average="" fac<="" form="" msec="" rms="" td="" value=""><td>eform (ii) wave tor.</td><td>[3]</td></t<100>	eform (ii) wave tor.	[3]
Q4. Q4.	(a) (b)	Define power factor and explain power triangle. An inductive coil takes 10A and dissipates 1000W when connected to a s 25Hz. Calculate (i) impedance (ii) effective resistance (iii) reactance (iv) power factor (vi) power angle of lag.	supply at 250V, inductance (v)	[2] [3]
Q5.	(a)	Explain resonance in a series circuit. Also show how the current, induct	tive reactance,	[2]
Q5.	(b)	In a series parallel circuit, the two parallel branches A and B are in ser impedances are $Z_A=10+j8$, $Z_B=9-j6$ and $Z_C=3+j2$ and the voltage across Calculate the current I_A and I_B and the phase angle between them. Also d	ies with C. the C is 100+j0 V. Iraw the phasor	[3]

diagram.

:::::: 11/10/2018 M ::::::