BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI
 (MID SEMESTER EXAMINATION)

$\begin{array}{ll}\text { CLASS: } & \text { BTECH } \\ \text { BRANCH: } & \text { CEP\&P/BT/CHEM.ENGG/CIVIL/MECH/PROD }\end{array}$
SEMESTER: I
SESSION: MO/2018

SUBJECT: EE101 BASICS OF ELECTRICAL ENGINEERING

TIME: 2 HOURS
FULL MARKS: 25

INSTRUCTIONS:

1. The total marks of the questions are 25.
2. Candidates may attempt for all 25 marks.
3. Before attempting the question paper, be sure that you have got the correct question paper.
4. The missing data, if any, may be assumed suitably.

Q1. (a) Define (i) active and passive elements (ii) linear and nonlinear elements
Q1. (b) Use Node voltage method to find the current through and voltage across each resistor for the circuit shown in Fig. 1.

Q2. (a) Explain with the aid of B-H curve the meaning of following terms: Remanence, Coercivity.
Q2. (b) An iron ring has a mean length of 1.0 m and a cross sectional area of $10 \mathrm{~cm}^{2}$. It has a radial air gap of 2 mm . a flux of 1.0 mWb is required in the air gap. The leakage factor is 1.2 and iron is such that when flux density is $1.2 \mathrm{~Wb} / \mathrm{m}^{2}$, the relative permeability is 400 . Calculate the number of ampere turns required.

Q3. (a) Draw the phasor diagram of the following voltages:

$$
\begin{aligned}
& v_{1}=100 \operatorname{Sin} 100 t \\
& v_{2}=120 \operatorname{Sin}(100 t-\pi / 3) \\
& v_{3}=150 \operatorname{Sin}(100 t+\pi / 3) \\
& v_{4}=200 \operatorname{Cos} 100 t
\end{aligned}
$$

Also find the resultant voltage and its rms value.
Q3. (b) A periodic waveform is shown in Fig. 2. Calculate the (i) frequency of waveform (ii) wave [3] equation for $0<\mathrm{t}<100 \mathrm{msec}$ (iii) RMS value (iv) Average value (v) Form factor.

Q4. (a) Define power factor and explain power triangle.
Q4. (b) An inductive coil takes 10 A and dissipates 1000 W when connected to a supply at 250 V , 25 Hz . Calculate (i) impedance (ii) effective resistance (iii) reactance (iv) inductance (v) power factor (vi) power angle of lag.

Q5. (a) Explain resonance in a series circuit. Also show how the current, inductive reactance, capacitive reactance and impedance varies with respect to frequency.
Q5. (b) In a series parallel circuit, the two parallel branches A and B are in series with C. the impedances are $Z_{A}=10+j 8, Z_{B}=9-j 6$ and $Z_{C}=3+j 2$ and the voltage across C is $100+j 0 \mathrm{~V}$. Calculate the current I_{A} and I_{B} and the phase angle between them. Also draw the phasor diagram.

Fig-1.

Fig. 2

