
BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH:	PRE-PHD ECE	SEMESTER : NA SESSION : MO/18
bitanen.		52551011 . 100/10
	SUBJECT: EC509 RF MICROELECTRONICS CIRCUIT DESIGN	
TIME:	3 HRS.	FULL MARKS: 50
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 		
0.1(a) Write down the expressions of MOS capacitances in cutoff linear and saturation regions		

- Q.1(a) Write down the expressions of MOS capacitances in cutoff, linear and saturation regions. [5] Q.1(b) Consider a MOS device with a 0.1- μ m gate length, $R_{ge,eff} = 40 \Omega$, $g_{sd} = 2 \text{ mA/V}$, and $C_{gd} = 3 \text{ fF}$. Assuming [5] a saturation velocity of 10⁷ cm/s, estimate the transition frequency f_T and maximum oscillation frequency, f_{max} of the MOS device. All the parameters have their usual meaning.
- Q.2(a) Define noise figure and noise factor. Write the value of noise factor of a noiseless circuit or system. [5]
- Q.2(b) If the compressed gain is given by $\alpha 1 + \frac{3}{4} \alpha 3 A_{in, 1dB}^2$ and ideal gain is given by $\alpha 1$, then calculate the [5] 1-dB compression point.
- Q.3(a) Write the names for digital counterparts of analog modulation scheme such as AM, PM, and FM. [5] Sketch the ASK, PSK and FSK waveforms to illustrate binary baseband signals.
- Q.3(b) Criticize multipath propagation. Explain how wireless communication handles intersymbol [5] interference.
- Q.4(a) List the various topologies of LNA. Write down the typical RX noise figure and the contributions of [5] the antenna switch (or duplexer), LNA and the remainder of the chain.
- Q.4(b) Schematize CMOS based LNA (CS stage) with resistive feedback and formulate its voltage gain and [5] noise figure.
- Q.5(a) Consider a power amplifier (shown in Fig. below) delivering 1W (+30 dBm) of power to a 50- Ω [5] antenna. The peak-to-peak voltage swing, V_{PP} , at the antenna reaches 20 V and the peak current through the load, 200 mA. Write the peak current carried by M_1 . Assume L_1 is large enough to act as an ac open circuit at the frequency of interest, in which case it is called an "RF choke" (RFC).

Q.5(b) Design a CMOS based class B power amplifier and formulate its maximum "drain efficiency", η . [5]

:::::03/12/2018:::::M