BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS:	PRE-PHD
BRANCH:	EC

SEMESTER : NA SESSION : MO/18

SUBJECT: EC501 MICROWAVE SEMICONDUCTOR DEVICES

TIME: 03:00 HRS.

FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.
- Q.1(a) Sketch the bar plot for frequency range of various semiconductor materials such as Si, SiGe, SiC, [5] GaAs, GaN, and InP.
- Q.1(b) Compare the electronic properties of Si, SiC, InP, GaAs and GaN in terms of (a) breakdown field, [5] (b) dielectric constant, (c) energy gap, @ 300 K.
- Q.2(a) A Ge-GaAs heterojunction bipolar transistor (HBT) has the following parameters: Ge lattice [5] constant, $a_1 = 5.646$ Å; GaAs lattice constant, $a_2 = 5.653$ Å; Ge electron affinity, $x_1 = 4.0$ eV; GaAs electron affinity, $x_2 = 4.07$ eV; Ge energy gap, $E_{G1} = 0.80$ eV; GaAs energy gap, $E_{G1} = 1.43$ eV; Determine: (a) The lattice match in percent, (b) The conduction-band differential between Ge and GaAs, (c) The valence-band differential between Ge and GaAs.
- Q.2(b) Sketch the equivalent circuit of tunnel diode connected to a parallel load and write the expression [5] of its power gain.
- Q.3(a) A HEMT has the following parameters: gate width, W = 150 μ m; electron velocity, v(z) = 2 × 10⁵ [5] m/s; two-dimensional electron-gas density, n(z) = 5.21 × 10¹⁵ m⁻². Calculate the drain current of the HEMT.
- Q.3(b) Diagram the high-frequency equivalent circuit of HEMT required to predict or calculate the values [5] for a small- or large-signal HEMT amplifier. Analyse and write down the typical parameter values.
- Q.4(a) Consider an n-type GaAs based Gunn diode with Electron density, $n = 10^{18} \text{ cm}^{-3}$; Electron density [5] at lower valley, $n_{\text{L}} = 10^{10} \text{ cm}^{-3}$; Electron density at upper valley, $n_{\text{U}} = 10^8 \text{ cm}^{-3}$ @ 300 K. Formulate the conductivity of the diode and solve for it.
- Q.4(b) Schematize three-valley-model energy level for InP diode and Write the three-valley model theory. [5]
- Q.5(a) Design a structure with semiconductor material to realize a Read diode along with doping profile [5] and field distribution. Write various regions on the structure to express their roles and characteristics.
- Q.5(b) An IMPATT diode has the following parameters: Carrier drift velocity $v_d = 2 \times 10^7$ cm/s, Drift-region [5] length $L = 6 \mu m$, Maximum operating voltage $V_{0max} = 100$ V, Maximum operating current $I_{0max} = 200$ mA, Efficiency $\eta = 15\%$ and Breakdown voltage $v_{bd} = 90$ v. Compute (a) the maximum continuous wave (CW) output power in watts; (b) the resonant frequency in gigahertz.

******28.11.18*****M