BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

CLASS: BE BRANCH: ECE SEMESTER: III SESSION : MO/2018

SUBJECT : EC3205 SEMICONDUCTOR DEVICES

TIN	\E:	1.5 HOURS	FULL MARKS: 25
 INSTRUCTIONS: The total marks of the questions are 30. Candidates may attempt for all 30 marks. In those cases where the marks obtained exceed 25 marks, the excess will be ignored. Before attempting the question paper, be sure that you have got the correct question paper. The missing data, if any, may be assumed suitably. 			
Q1		Write down the expression for probability function? Exp Plot (a) band diagram, (b) density of states, (c) Ferm carrier concentrations for n-type semiconductors at the	ni-Dirac distribution, and (d) the [3]
Q2	(a)	The intrinsic level E_i lies exactly at the middle of the	band gap ($E_c - E_v = E_G/2$). The [2]
	(b)	statement is true or false. If false why? Assume that intrinsic carrier concentration $n_i = 1.5 \times 10^1$ 10^{17} Antimony atoms/cm ³ . What is the equilibrium hole far away is the Fermi Energy level, E_F with respect to i	e concentration p_0 at 300 K? How
Q3		Define diffusion length and minority carrier life time. Explain how a pulse of excess electrons injected at $x =$ time. Substantiate your answer with suitable diagram.	[2] 0 at time t = 0 will spread out in [3]
Q4	(a)	Differentiate between Hall effect and Haynes-Shock	kley experiment in relation to [2]
	(b)	measurement of carrier mobility? Draw a plot to explain how injected excess hole conc with x (distance) due to recombination in steady state	
Q5		Why is the transition region formed? Why does it stop w What is barrier potential? Barrier potential cannot be or false. What is the value of barrier potential for Si PN	measured. The statement is true [3]
Q6		Explain the physical meaning of $C_d(0)$? In a p-n junction, if n-type region is on the -x side and draw the plot of electric field with $-w_n$ and $+w_p$ bei region in n-side and p-side respectively.	

:::: 13/09/2018 E :::::